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Introduction 
The objective of this Idea Development project was to develop a novel, unbiased, 
sequencing-based genomic approach for identifying the direct chromosomal targets of 
transcription factors that are important in breast cancer. Cancer involves, at least in 
part, aberrant programs of gene expression mediated by oncogenic transcription factors 
activating downstream target genes. Distinguishing between direct and indirect targets 
of transcription factors is important for reconstructing the transcriptional regulatory 
networks that underlie complex gene expression programs that are activated in cancer. 
Transcription factors have been proposed as targets of anti-cancer therapy [1]. 
Identification of the target genes of oncogenic transcription factors is therefore of great 
interest and an area of intensive investigation. The binding of oncogenic transcription 
factors to their cognate sites in vivo is strongly influenced by chromatin structure and 
the positions of nucleosomes along the promoter and relative to potential binding sites. 

The direct in vivo binding targets of a transcription factor can be identified using the 
technique of chromatin immunoprecipitation (ChIP), where DNA bound by a 
transcription factor in vivo is first isolated after crosslinking and immunoprecipitation. 
Genomic identification of these binding sites is customarily accomplished by 
hybridization to a comprehensive whole-genome microarray that includes all potential 
regulatory elements (ChIP-chip). We proposed to develop STAGE (Sequence Tag 
Analysis of Genomic Enrichment) as an alternative to whole-genome hybridization for 
target identification. STAGE was based on high-throughput sequencing of short 
sequence tags from DNA isolated by ChIP. These tags are mapped back to the 
reference human genome sequence and computational analysis of the localization and 
clustering of the tags enables identification of the binding sites of the transcription 
factor. 

We have accomplished the original objectives of the project in terms of developing the 
technology. We have further extended it to take advantage of next-generation 
sequencing methodologies that were introduced since the inception of this project. The 
first part of this Final Report describes the research accomplishments with reference to 
the approved Statement of Work, previous Annual Reports, and publications arising out 
of this project. Subsequently, we describe progress over the last year since the last 
Annual Report, including unpublished data. 

Body 

Task 1 Develop STAGE to identify direct chromosomal targets of transcription factors. 

A) Our development of STAGE (Sequence Tag Analysis of Genomic Enrichment) 
first involved a proof-of-principle experiment in yeast where we piloted the ability of our 
tag-sequencing based method to identify targets of the general transcription factor TBP 
(TATA-box binding protein). We then applied this technique for identifying novel targets 
in human cells of the transcription factor E2F4, a member of the E2F family of 
transcription factors involved in cell proliferation. Concurrent with the development of 
the experimental methods for carrying out STAGE, we also developed and implemented 
computational pipelines for aligning the sequence tags back to the human genome 
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sequence, as well as for quantitating the statistical enrichment of neighboring tags so as 
to signify enrichment in the ChIP. These accomplishments were described in the first 
Annual report (2005) and the report of our development of STAGE as a novel 
technology was published as an Article in Nature Methods [2], which is included in the 
Appendix. 

B) Although we had initially planned to carry out STAGE analysis of targets of ER in 
breast cancer, competing genome-wide analyses by other labs prompted us to focus 
our analysis on c-Myc and E2F4, which are both relevant in breast cancer (Annual 
Report 2006), as well as consider other transcription factors and applications of 
sequencing technologies. This was detailed in the 2006 Annual report. At this time we 
were still using standard sequencing technology, which involved making concatamers of 
STAGE sequence tags, cloning into plasmid vector, and sequencing by standard 
Sanger chemistry. 

The introduction of 454 sequencing technology in 2005 [3] offered us the opportunity to 
tremendously increase the depth of sequencing in STAGE, and at the same time 
bypass the laborious concatamerization and cloning steps required for the original 
protocol. We worked on adapting STAGE to the 454 platform. We succeeded in using 
454 technology to identify novel targets of the transcription factor STAT1 as well as 
Myc. Our success with these efforts was described in the 2006 and 2007 Annual 
Reports, and was published as a report in Genome Research [4] which is included in 
the Appendix.  

Task 2 Validation, analysis and interpretation of direct targets identified by STAGE 

A) For validation, analysis, and interpretation of transcription factor targets identified 
by STAGE, we have adopted several parallel approaches. First, we carry out 
computational simulations to estimate the false discovery rate (FDR) of our tag 
clustering algorithms. Second we perform real-time quantitative PCR (qPCR) comparing 
STAGE-identified targets between ChIP and input samples. These methods of analysis 
have been described in previous Annual reports as well as in the publications of the 
initial STAGE results for E2F4, STAT1 and Myc [2,4]. Third, we have used tiling 
microarrays for a more global comparison of targets identified by STAGE with targets 
identified by ChIP-chip. Our joint data on Myc targets identified by STAGE and by ChIP-
chip formed part of the ENCODE Consortium publication last year in Nature [5], with the 
Myc ChIP-chip data serving both as a verification of STAGE results, as well as providing 
insights into the binding of this transcription factor near promoters. Fourth, we have 
examined the enrichment of DNA sequence motifs in the regions identified as binding 
sites by STAGE – here we consider both the enrichment over background of motifs 
expected for the transcription factor that was under study (Myc or STAT1), and also the 
co-enrichment of motifs for other transcription factors that may bind cooperatively and 
regulate gene expression together with the chosen factor. This analysis of motif co-
enrichment was presented earlier for STAT1 and Myc (with Solexa sequencing) in our 
2007 Annual Report, and the analysis for STAT1 is part of the Genome Research 
publication included in the Appendix. A similar analysis for our recent Solexa 
sequencing data for E2F4 is described below. We have also developed a computational 
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method to identify statistically and biologically significant pairs of transcription factor 
binding sites in the human genome, which could be applied to data from our ChIP-seq 
results [6]. Finally, we consider enrichment of functional categories of genes identified 
as targets by STAGE and the pathways mediated by them as providing insights into the 
functions targeted by the transcription factor. Again, this analysis was included in our 
2007 Annual Report for STAT1 and in the Genome Research paper in the Appendix, 
and is included below for new data with E2F4. 

B) Use of Solexa ChIP-seq. Although whole-genome tiling arrays are becoming 
increasingly available from Affymetrix and NimbleGen, their use for ChIP-chip of 
oncogenic transcription factors remains challenging. Two key limitations of genome-
wide ChIP-chip are first, that tiling arrays still cover only the non-repetitive portions of 
the genome (50-70%). Since a sequencing method such as STAGE is an unbiased 
sampling of the entire genome, it relieves this limitation to a considerable extent. 
Second, ChIP DNA, which is low in yield, needs to be amplified significantly in order to 
hybridize it to several tiling arrays 
which are required to cover the 
genome. Next-generation sequencing 
technologies (454, Illumina/Solexa, 
ABI-SOLiD, and others on the horizon 
such as Helicos) make it possible to 
sequence hundreds of thousands to 
millions of sequence tags from small 
ChIP sample sizes without the need for 
cloning in plasmid vectors as we 
originally conceived in our proposal, 
and they require only limited 
amplification. As such, the use of 
Solexa and 454 type sequencing 
technologies (generally termed ChIP-
seq) represent the natural evolution of 
the STAGE method for ChIP analysis 
that was originally conceived in this 
project. 

The sequencing approach has a further 
advantage over microarray based 
approaches when single nucleotide 
resolution is desired for identifying the 
ends of the DNA fragments. Although 
this is not useful for ChIP-chip where 
the ends of the isolated DNA fragments 
are generated by random 
ultrasonication, single nucleotide 
resolution is extremely useful for 
mapping the position of individual 
nucleosomes whose positions along 

Fig. 1 Nucleosomes isolated by array capture. (A) 
Representative example of mononucleosomes 
generated by micrococcal nuclease (MNase) 
digestion of K562 erythroleukemia cell chromatin. 
(B) Nucleosomes from two independent samples as 
in A were captured using ENCODE region tiling 
arrays (NimbleGen), amplified by PCR and analyzed 
on a gel. The left panel shows captured 
mononucleosomes and the right panel is after gel 
extraction of the mononucleosomal product. This 
product is being sequenced using Solexa 
technology. 
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the genome to form chromatin strongly influence where oncogenic transcription factors 
bind in vivo. Since the last Annual Report, our main focus has been to extend STAGE 
ChIP-seq (using the Solexa platform) to additional transcription factors that are relevant 
to cell proliferation and breast cancer, as well as to develop the methodology to map 
single nucleosomes in chromatin using the sequencing approach. 

C) Nucleosome/chromatin analysis For single-nucleosome mapping, we have 
carried out a successful proof of principle study initially in yeast by using our ultra-high 
throughput sequencing approach to map all the single nucleosomes and their dynamic 
remodeling in response to a transcriptional perturbation. This work was recently 
published as an article in PLoS Biology [7] (included in Appendix). Importantly, this work 
allowed us to develop the computational infrastructure to define the ends of individual 
nucleosomes from ultra high-throughput sequencing data, which will be applicable to 
nucleosome mapping in the human genome. In order to accomplish nucleosome 
mapping in human, the required depth of sequencing to cover all nucleosomes still 
makes it impractical to carry out on a large enough scale. However, we are now 
developing a solution by using array capture methodology [8] to target in-depth 
sequencing to a desired region of the genome. Our initial tests using array capture to 
recover DNA from selected loci have yielded positive results (Fig. 1), and we have now 
prepared nucleosomal DNA from the ENCODE regions as a proof of principle and 
submitted these samples for Solexa sequencing. 

The transcription factors that we are 
currently analyzing by ChIP-seq using 
Illumina/Solexa include the immediate 
early oncogenic factor SRF (Serum 
Response Factor), its co-factors 
ELK1 and ELK4, the factor E2F4, and 
its cofactor p130. SRF has been 
implicated in immediate-early gene 
regulation in MCF7 breast cancer 
cells [9] while ELK1 and ELK4 are ets 
family transcription factors implicated 
in breast and other cancers [10,11]. 
E2F4 is also known to be involved in 
breast cancer [12,13]. Although we 
had initially developed our STAGE 
method using E2F4 as an example 
(also described in Annual Report 
2005-2006), to date there is no truly 
unbiased whole-genome ChIP 
analysis of this important transcription factor. Below is described some of our recent 
analysis of E2F4 ChIP-seq data. We have just received similar ChIP-seq data for SRF, 
ElK1 and ELK4, and our p130 ChIP-seq sample is currently being processed. 

D) ChIP-seq for additional transcription factors In collaboration with the British 
Columbia Genome Sequencing Center in Vancouver, we have generated ChIP-seq 

Fig. 2 Binding distribution of genome-wide E2F4 
targets in relation to the transcription start sites 
(TSS). The top panel is a histogram of peak 
heights ≥ 9 relative to the TSS. The bottom table 
shows the fraction of binding peaks in each 
indicated interval relative to the TSS in Kb. 
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datasets for several transcription 
factors including E2F4. In some cases 
(SRF, ELK1, ELK4), these ChIP 
experiments were carried out to 
examine differential binding in 
quiescent, serum-starved primary 
fibroblasts versus proliferating, serum-
treated cells. For E2F4 ChIP carried out 
in GM06990 lymphoblastoid cells, we 
obtained 11.6 million Solexa reads 
averaging 32 bp each, of which 6.1 
million were uniquely aligning to the 
reference human genome sequence. 
Since binding of any transcription factor 
to its target sites in vivo is expected to 
vary continuously over a large range of 
affinities, it is not trivial to segregate 
genomic loci cleanly into "targets" and 
"non-targets". However, the strength of 
binding, and the enrichment of a given 
locus in the ChIP correlates with the number of overlapping reads, indicated by the 
"height" of a sequence peak. At a False Discovery Rate (FDR) of 0.1%, corresponding 
to a peak height of 9, we could identify 5086 binding targets for E2F4 in the genome. 
This represents the first truly unbiased whole-genome identification of E2F4 binding 
targets in the human 
genome. Our 
preliminary analysis of 
subsets of the reads 
indicates that we have 
identified the vast 
majority (~90%) of 
actual E2F4 binding 
sites in the genome in 
this experiment. 

As we have observed earlier with Myc, there was a strong tendency for E2F4 binding to 
be near the transcriptional start sites of genes (Fig. 2). Analysis of the DNA sequences 
corresponding to the ChIP-seq peaks using the pattern discovery program DRIM, 
revealed the strong enrichment of the E2F binding motif (Fig. 3). Motif co-occurrence 
analysis indicated that out of 363 high-quality vertebrate transcription factor binding 
motifs available in the TRANSFAC database, 86 sequence motifs were found to occur ≤ 
6 bases from an E2F4 motif. These include the motifs for transcription factors such as 
AP-2, ELK1, NF-κB, Myc, Egr-4, C/EBP and others, which could potentially be co-
regulators with E2F4 of its target genes. However the statistical and biological 
significance of this type of co-factor occurrence remains to be determined and will be 
analyzed in the coming months. Analysis of enrichment of functional gene categories 
among identified targets revealed functions such as cell-cycle regulation (Fig. 4), DNA 

Fig. 3 Motif analysis of genome-wide E2F4 
targets. The top shows the consensus motif 
for E2F4 as designated by TRANSFAC. The 
bottom shows a matching motif that was 
discovered by the program DRIM in the 
binding sites for E2F4 identified by ChIP-seq. 
The binding sites are statistically significant 
as indicated. 

Fig. 4 Sample of Solexa ChIP-seq data showing a strong binding site 
for E2F4 (peak height 68) upstream of the cell cycle gene CDC25. 
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replication and damage, cell-cycle checkpoints, chromosome segregation, etc, which 
were all statistically significantly enriched, consistent with a role for E2F4 in regulating 
cell-cycle progression. 

We have currently started receiving similar ChIP-seq data for the transcription factors 
SRF, ELK1 and ELK2, as 
well as the E2F4 co-factor 
p130. Fig. 5 shows the 
verification of ChIP for the 
first three transcription 
factors, using qPCR to show 
binding of these proteins to 
target promoters in quiescent 
and serum-stimulated cells. 
Analysis of the targets of 
these oncogenic 
transcription factors will shed 
considerable light on the 
regulatory networks 
mediated by them in 
proliferating cells and in 
cancer. We anticipate 
preparing these new results 
for publication in the coming 
months. 

Personnel receiving pay from this project 
Simon Ascher Undergraduate Research Assistant 
Akshay Bhinge Graduate Student 
Patrick Killion Graduate Student 
Ryan McDaniell Graduate Student 
Bum-Kyu Lee Graduate Student 
Zheng Liu  Post-doctoral Fellow 
Laura Tu  Undergraduate Research Assistant 
 

Key Research Accomplishments 
 Developed STAGE (Sequence Tag Analysis of Genomic Enrichment), a novel 

method to identify the chromosomal targets of transcription factors including 
oncogenic transcription factors. 

 Optimized protocols and developed novel computational analysis methods for 
successful application of STAGE in mammalian cells. 

 Verified target promoters predicted by STAGE through independent means such as 
promoter specific PCR and microarray hybridization (ChIP-chip). 

Fig. 5 Real time qPCR verification of ChIP samples 
representing targets of SRF, ELK1 and ELK4. Binding to the 
indicated target promoters is shown in quiescent as well as 
proliferating fibroblasts, after normalization to a control locus. 
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 Successfully adapted STAGE for sequencing using 454 bead-based pyrosequencing 
technology and applied it in proof-of-principle experiment to identify targets of Stat1, 
important in breast cancer. 

 Successfully used Solexa next-generation sequencing technology for identifying 
targets of the oncogenic transcription factor c-Myc, also important in breast cancer. 

 Extended STAGE ChIP-seq approach for several additional transcription factors, 
E2F4, p130, SRF, ELK1, ELK4 that are important in breast and other cancers. 

 Applied sequencing approach for identifying positions of nucleosomes which govern 
transcription factor binding. Completed proof-of-principle experiment in yeast to map 
nucleosome positions and their remodeling. 

 Developed modified approach to apply nucleosome sequencing to human 
promoters, by combining array capture of promoter nucleosomes with deep Solexa 
sequencing. 

Reportable Outcomes 
 Kim, J., Bhinge, A. A., Morgan, X. C., and Iyer, V. R. (2005). Mapping DNA-protein 

interactions in large genomes by sequence tag analysis of genomic enrichment, Nat 
Methods 2, 47-53. 

 Kim J. & Iyer V.R. Identifying Chromosomal Targets of DNA-Binding Proteins by 
Sequence Tag Analysis of Genomic Enrichment (STAGE), in Current Protocols in 
Molecular Biology Unit 21.10, (Ausubel F.M. et al, eds.) John Wiley & Sons. 

 Ph.D. awarded to J. Kim for his thesis "Genome-wide mapping of DNA protein 
interactions in eukaryotes" University of Texas at Austin, December 2005. Dr. Kim 
was the first author on our published report on STAGE. 

 Platform Presentation: "Genome-wide mapping of DNA -protein interactions in large 
genomes by STAGE — Sequence Tag Analysis of Genomic Enrichment" at the Cold 
Spring Harbor meeting on "Systems Biology: Genomic Approaches to 
Transcriptional Regulation", March 2004 

 Platform Presentation at the American Society of Microbiology (Texas) meeting, 
Houston, November 2004 

 Grant award R01 HG003532-01 V. Iyer (PI) from NIH/NHGRI "STAGE and FAIRE 
for Regulatory Element Identification" This is a technology development project 
funded under the ENCODE Consortium. It is a collaboration between my lab and the 
lab of Dr. Jason Lieb at University of North Carolina at Chapel Hill. The objective 
was to develop and combine STAGE and sequencing methods with other methods 
for isolating open chromatin elements in the human genome. 

 ENCODE Teleconference Presentation: "Identifying the Chromosomal Targets 
of Proteins by STAGE (Sequence Tag Analysis of Genomic Enrichment)" April 21 
2006. 
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 University Continuing Fellowship awarded to Patrick Killion (2005-2006), who is 
responsible for developing ArrayPlex, used for analysis of transcription factor target 
data (described in 2006 Annual Report). 

 Bhinge, A. A., Kim, J., Euskirchen, G. M., Snyder, M., and Iyer, V. R. (2007). 
Mapping the chromosomal targets of STAT1 by Sequence Tag Analysis of Genomic 
Enrichment (STAGE), Genome Res 17, 910-6. 

 Grant award U54 HG004563-01 (sub-contract) G. Crawford (PI), V. Iyer co-
investigator. "Comprehensive Identification of Active Functional Elements in Human 
Chromatin". This was an scale-up of the ENCODE consortium project to the whole 
genome. The objective was to combine methods for open chromatin isolation 
(DNaseI HS, FAIRE) with ChIP-chip of selected transcription factors in the ENCODE 
sanctioned cell lines. Next-generation sequencing is used extensively as a readout 
in this project. 

 The ENCODE Project Consortium (2007). (309 co-authors including V. Iyer, A. 
Bhinge and J. Kim from the Iyer lab) Identification and analysis of functional 
elements in 1% of the human genome by the ENCODE pilot project, Nature 447, 
799-816. 

 Shivaswamy, S., Bhinge, A., Zhao, Y., Jones, S., Hirst, M., and Iyer, V. R. (2008). 
Dynamic remodeling of individual nucleosomes across a eukaryotic genome in 
response to transcriptional perturbation, PLoS Biol 6, e65.  

Conclusions 
This Idea Development project was successful in developing STAGE as a high-
throughput, sequencing based approach for identifying transcription factor targets. 
STAGE was applied to the oncogenic transcription factors Myc and E2F4, which are 
important in breast cancer. The advent of next-generation sequencing technology 
during the course of this project, and the 1 year no-cost extension allowed us to adapt 
our procedures and analysis algorithms to these new methods, and take advantage of 
the increased throughput provided by them. We have also been able to use the same 
sequencing based approach to examine chromatin structure and nucleosome 
positioning in unprecedented detail. Recent data from several transcription factors will 
be analyzed in the coming months and published. 

As an outcome of this project, it is possible to comprehensively identify the binding 
targets of any transcription factor in breast cancer samples. One can now potentially 
identify targets of transcriptional regulators like Myc, ER, E2F4, etc. in primary breast 
cancer biopsy samples from cancer patients. It will then become possible to elucidate 
differences in the molecular pathways and networks mediated by these oncogenic 
regulators among different cancer patients. One potential utility of this could be that 
such binding analysis could form the basis for a new type of class discovery approach 
and sub-typing among cancers, with distinct diagnostic and prognostic value, in a 
manner similar to, but independent from what has previously been possible with gene 
expression or proteomic profiling. 
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Mapping DNA-protein interactions in large genomes by
sequence tag analysis of genomic enrichment
Jonghwan Kim, Akshay A Bhinge, Xochitl C Morgan & Vishwanath R Iyer

Identifying the chromosomal targets of transcription factors
is important for reconstructing the transcriptional regulatory
networks underlying global gene expression programs. We have
developed an unbiased genomic method called sequence tag
analysis of genomic enrichment (STAGE) to identify the direct
binding targets of transcription factors in vivo. STAGE is based on
high-throughput sequencing of concatemerized tags derived from
target DNA enriched by chromatin immunoprecipitation. We first
used STAGE in yeast to confirm that RNA polymerase III genes
are the most prominent targets of the TATA-box binding protein.
We optimized the STAGE protocol and developed analysis
methods to allow the identification of transcription factor
targets in human cells. We used STAGE to identify several
previously unknown binding targets of human transcription
factor E2F4 that we independently validated by promoter-
specific PCR and microarray hybridization. STAGE provides a
means of identifying the chromosomal targets of DNA-associated
proteins in any sequenced genome.

Determining the binding sites of regulatory proteins on the genome
is important for reconstructing transcriptional regulatory net-
works1–3. The binding of a transcription factor to its genomic
targets can be assayed by combining chromatin immunoprecipita-
tion (ChIP) and microarray (chip) hybridization. This ChIP-chip
method was first developed for yeast4, where it has been used to
define the targets of more than 100 transcription factors2,5,6.
Although ChIP-chip has also enabled the identification of

transcription factor targets in human cells7,8, it is challenging to
apply this approach comprehensively to study large and complex
genomes. Human promoter microarrays based on core promoters7

or CpG islands8 cover a subset of all potential regulatory regions
and may not adequately represent regions that are distant from
genes or within introns. Tiling arrays of polymerase chain reaction
(PCR) products9 or oligonucleotides10 have been made for the
smallest human chromosomes, but extending such arrays to cover
the entire genome is expensive, and the arrays are currently
unavailable to most researchers. Although these efforts are under-
way for the human genome and some model organisms, the
development of similar platforms for the mouse, plants, proka-
ryotes and many other model organisms is lagging.

Here, we address some of these limitations by developing an
unbiased genomic method to identify the chromosomal targets of
transcription factors. We term this method STAGE, and it is based
on high-throughput sequencing of concatemerized tags derived
from DNA enriched by ChIP. Cloning and sequencing of ChIP
DNA has been carried out previously11, but these efforts did not
constitute a high-throughput genomic approach. As a demonstra-
tion of its utility, we first used STAGE to map the targets of TATA-
box binding protein (TBP) in yeast. We then optimized STAGE and
developed analysis algorithms that enabled us to successfully use
STAGE to identify several known and new binding targets of
transcription factor E2F4 in human cells.

RESULTS
STAGE identifies chromosomal targets in yeast
STAGE is conceptually derived from serial analysis of gene expres-
sion (SAGE)12,13, but the template for STAGE consists of genomic
loci enriched by ChIP. Briefly, transcription factors are cross-linked
to their target sites in vivo with formaldehyde. After ChIP with a
specific antibody against a given transcription factor, the recovered
DNA fragments are amplified by PCRusing biotinylated degenerate
primers and digested with the four-base cutter (5¢-CATG) restric-
tion endonuclease NlaIII. The biotinylated fragments are isolated
using streptavidin beads and ligated to linkers containing a recog-
nition site for MmeI, a type IIS restriction enzyme. Digestion with
MmeI releases 21-base-pair (bp) tags containing NlaIII sites from
DNA fragments enriched after ChIP. Multiple tags are concatemer-
ized, cloned and sequenced. STAGE generates 21-bp tags derived
from ChIP DNA (Fig. 1). Mapping these tags to the genome can
identify the loci represented in the ChIP sample and thus identify
protein-binding locations.
We first used STAGE to identify the targets of yeast TATA-box

binding protein (TBP). Out of a total of 1,344 sequenced tags,
294 (22%) did not match any sequence in the yeast genome. The
total number of sequenced tags and the number of orphan and
ambiguous tags are provided in Supplementary Table 1 online.
Out of 1,050 valid STAGE tags, 433 showed multiple hits on the
genome and could not be assigned to a single gene; 77 tags had
single hits but had no annotated genes within one kilobase (kb).
The remainder comprised 437 distinct tags, each of which had
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only one hit on the yeast genome and was located within 1 kb of
the start of a gene.
Of the 437 tags, 378 occurred only once in the STAGE pool and

59 occurred multiple times. Seventy-nine putative targets were
represented by more than one tag occurrence. The one notable
feature of the abundant tags was that a substantial majority mapped
within 1 kb of an RNA polymerase III (pol III) promoter. Based on
this observation and on the fact that pol III promoters are
prominent targets of TBP14,15, we assigned the gene with a pol III
promoter as the putative target when a tag mapped near it. In other
cases, the nearest gene was assigned as the putative target. Tags that
occurred multiple times in the STAGE pool, as well as their putative
targets, are listed (Table 1). Sixty-eight of 79 targets represented by
multiple tags were genes with an RNApol III promoter. STAGE thus
identified many prominent chromosomal targets of TBP in yeast.

Validation of STAGE targets by microarray hybridization
To compare our STAGE targets to those identified by microarray
hybridization, ChIP DNA samples were fluorescently labeled and
cohybridized to whole-genome (ORFs + intergenic regions) micro-
arrays with an amplified genomic DNA reference. The occupancy

Formaldehyde cross-linking and IP

Random amplification with

biotinylated primer

NlaIII digestion and

binding to streptavidin beads 

Division in half and

ligation with linkers 1 and 2

Digestion with type IIS enzyme MmeI

Ligation and amplification with

nested primers 1 and 2 

Digestion with NlaIII and

gel purification of ditags

Ligation to make concatemers

Tube 1 Tube 2

17 bp4 bp

Sequencing and analysis

Figure 1 | The STAGE strategy. STAGE is based on high-throughput sequencing
of concatemerized tags of defined length that are derived from DNA enriched
by ChIP. Proteins were cross-linked to their binding sites in vivo with
formaldehyde and chromatin was extracted and sheared. The cross-linked
protein-DNA complexes were immunoprecipitated, cross-links were reversed
and ChIP DNA was amplified by PCR using biotinylated primers. Amplified DNA
fragments were digested with NlaIII, which cuts at 5¢-CATG sites. Fragments
with ends containing the NlaIII site were isolated by binding to streptavidin
beads. They were separately ligated to one of two linkers containing a
MmeI site, then incubated with MmeI, which cleaves 21 bp away from its
recognition site. The 21-bp tags attached to linkers were isolated and ligated
to create ditags. Ditags were amplified by PCR using nested primers and
trimmed by digesting with NlaIII. Trimmed ditags were gel purified,
concatemerized by ligation, cloned and sequenced.

Table 1 | High-abundance yeast TBP STAGE tags

Tag sequence nocc Target gene

CATGATGGAAACGAAGACGAC 10 tF(GAA)B
CATGAGAATGTGCTTCAGTAT 8 tF(GAA)B
CATGAAGGTGACAAAATGATT 5 tK(CUU)E1
CATGATCAAATTCTGTGAAGC 5 tL(CAA)A
CATGCAAATCTAAATAAAAAC 5 tH(GUG)H
CATGTATACTTAACAGATATG 5 RDN 5-1
CATGAGATATGCTGTTTCAAG 4 tL(CAA)A
CATGTATATATTGCACTGGCT 4 RDN 5-1
CATGAAACTAGGAAAACGTAC 3 tE(UUC)J
CATGAAGATGATTCGATACCG 3 tV(AAC)M1
CATGATGAAGTTTAGATCTGC 3 tW(CCA)K
CATGATGGCAGACTTCCATCG 3 tV(AAC)G2
CATGATGTCGCTATTTCTAAT 3 tY(GUA)J2
CATGCAAGATGTAGACCCAAC 3 YGRWs5
CATGCAATCCCAGTAGTAGGT 3 SCR1
CATGCAGCTGTTGTATCAAGA 3 tV(AAC)G1
CATGCATGTTTTACGTTGTGG 3 tP(AGG)N
CATGGAATGTGCAATTAAGAC 3 tT(AGU)N2
CATGTGGTGTAAAAAGATAAC 3 tT(AGU)J
CATGTTATCCTGAGCATCCAC 3 tG(GCC)O2
CATGTTTACCCTCAAACAAAG 3 tV(AAC)K1
CATGTTTCCTCTAAAGATGGT 3 tR(UCU)B
CATGAAAACCTCTCAAACCTT 2 tH(GUG)E1
CATGAAAAGGTTTAATGACTT 2 tT(AGU)O1
CATGAAGACCTATTCGCTTAT 2 tV(AAC)G3
CATGAAGCGCACAAGATTGGA 2 tR(UCU)G3
CATGAATGGCGCAGATTTATT 2 tV(AAC)M1
CATGAGGCGCACTTTTGATTT 2 tY(GUA)F2
CATGAGTTGCCATTAGAAACG 2 tW(CCA)G1
CATGATACTGACTTATTGGGC 2 tD(GUC)L1
CATGCAAGACGTAGACCCAAC 2 tI(AAU)I2
CATGCAAGTGTGGCATAAAAG 2 tK(CUU)E2
CATGCAGAAAAGATAAGATGC 2 YPL029W
CATGCCTGTGCAACGCCGCAG 2 tE(UUC)J
CATGCTCGGCAATAGCTTCAA 2 tG(CCC)D
CATGCTTTGTCTTCCTGTTAG 2 tP(UGG)O2
CATGGAAAAACGAATGGAGAC 2 tA(AGC)K1
CATGGAAATCGAACCTTTCAC 2 tN(GUU)N2
CATGGAGTCTAACTTTGTTGT 2 tN(GUU)O2
CATGGAGTCTTTTATTTCCGA 2 tN(GUU)L
CATGGCAAAAACTGTAAAGTT 2 tR(UCU)G2
CATGGCGAATTTTTCACATAT 2 tV(UAC)D
CATGGCGATTATTTCATTATG 2 tR(UCU)G3
CATGGCTAGTCAAATAAGTGG 2 YGL080W
CATGGGGTAAGTTCCGATGGC 2 tV(AAC)E2
CATGGGTTCAAACACTTCCAA 2 tY(GUA)F1
CATGGTGAAAGTTTAATCTTT 2 tR(ACG)K
CATGTAAACCATCCCTTTTCA 2 YJL005W
CATGTATAAAACCTACCGCTT 2 tS(CGA)C
CATGTATCAAATTGCACGTGA 2 YPRCd22
CATGTATGAAACTGGGAATTC 2 tS(AGA)B
CATGTCAATGTCCATTTCTTT 2 tT(AGU)I2
CATGTCTTTTGTGGATTATTT 2 tS(CGA)C
CATGTGAGGCTTAGGTGATTT 2 tN(GUU)N2
CATGTGTTTGAATTAGCGATC 2 tL(CAA)A
CATGTTACAATTCCTTTCCAT 2 tG(UCC)G
CATGTTATGTTCAATTGGCAG 2 YELCt1
CATGTTCAAGGACGGCTTGGT 2 tD(GUC)J1
CATGTTTTCGTTATTTCATAA 2 tR(UCU)B

Tags that occurred more than once are listed, including the 4-bp NlaIII site (5¢-CATG). The
number of times the tag occurred in the STAGE pool is indicated by nocc. Target genes were
designated as described in the text.
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of each promoter by TBP was indicated by the rank of its
enrichment in ChIP relative to the reference16.
STAGE identified increasing numbers of genes as TBP targets

with increasing enrichment in ChIP as measured by microarrays
(Fig. 2a). This relationship was more pronounced when we con-
sidered only genes that were identified as targets by more than one
tag occurrence (Fig. 2a). Among the putative TBP targets repre-
sented by at least two tag occurrences, 92% had high enrichment
values (490) in ChIP-chip. When the two ChIP samples were
independently generated, 91% of the targets predicted by at least
two STAGE tag occurrences showed high ChIP-chip enrichment
values (Fig. 2b). Thus, identification of chromosomal targets by
STAGE correlates well with that by ChIP-chip, especially when the
target genes were designated by multiple occurrences of STAGE tags.

STAGE in human cells
We chose transcription factor E2F4 to test STAGE in human cells.
E2F4 is a member of the E2F family of transcriptional regulators
that functions as a repressor in quiescent and early G1 cells

17. We
first used ChIP and promoter-specific PCR to verify the binding of
E2F4 to known target promoters7 (Fig. 3a). We then constructed a
human E2F4 STAGE pool from these validated ChIP samples.
To reduce and account for background genomic DNA in ChIP,

we introduced two enhancements. First, we tested a subtraction
step as a potential means of reducing background from nonspecific
genomic loci. Briefly, DNA fragments enriched by ChIP were
randomly amplified by PCR with degenerate primers, and, in
parallel, sheared genomic DNA fragments were amplified using
biotinylated degenerate primers. ChIP DNA was hybridized to an
excess of biotinylated genomic DNA and biotin-containing hetero-
duplexes were removed by binding to streptavidin beads. The
remaining DNA was used as the input for STAGE. Details of the
subtraction procedure are given in Supplementary Methods
online. In a ChIP sample where the enrichment of an E2F4 target

over background was originally suboptimal, we observed improved
enrichment after subtraction (Fig. 3b). Tags from this E2F4
subtraction STAGE (SubSTAGE) pool were combined for analysis
with STAGE tags obtained without the subtraction step.
Additionally, we performed STAGE on normal, unselected

human genomic DNA to profile tags arising from background
genomic DNA that was not enriched by ChIP. This background
STAGE pool would thus serve as an analysis control to account for
sampling of STAGE tags from highly repetitive regions of the
genome. We analyzed approximately 3,500 valid tags to identify
targets of E2F4 in human cells.

Targets of human transcription factor E2F4
To overcome the ambiguity inherent in mapping many 21-bp tags
to specific locations on the human genome, we developed an
algorithm to score tags and genes as putative targets. Each distinct
tag was assigned a tag score based on the number of its hits on the
genome and the number of its occurrences in the STAGE pool.
Details of the scoring method are described (see Methods and
Supplementary Methods online). A higher number of hits on the
genome lowered the tag score, and a higher occurrence number in
the STAGE pool raised the tag score. For each human gene in
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Figure 2 | Correlation between yeast targets predicted by STAGE and ChIP-
chip. The enrichment value of yeast TBP targets after ChIP was determined
by microarray hybridization. The percentile rank (0–100) of the ratio of
ChIP-enriched fragments to genomic DNA was used to determine the ChIP
enrichment value for each locus. For each interval of TBP ChIP enrichment
values plotted on the x-axis, the number of targets predicted by STAGE is
plotted on the y-axis. (a) Comparison between STAGE and ChIP-chip when
the same sample was analyzed by both methods. The gray line indicates all
predicted STAGE targets, whereas the black line indicates only the subset
of 79 target genes predicted by multiple tag occurrences. (b) Comparison
between STAGE and ChIP-chip when different ChIP samples were analyzed.
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Figure 3 | ChIP of E2F4 targets and validation of STAGE targets by ChIP-PCR.
(a) Binding of human E2F4 to known target promoters in fibroblasts. PCR was
performed using primers corresponding to the promoters of the indicated
genes. The ninth exon of CCNB1 was used as a negative control for ChIP
enrichment (NC1). (b) The subtraction procedure leads to improved
enrichment of the RAD54L promoter in ChIP. ’M’ is a size ladder. (c) Validation
of STAGE targets by ChIP-PCR. A subset of 18 promoters out of the 45
predicted by STAGE were randomly chosen. E2F4 binding to the promoters of
the indicated genes was assayed by promoter-specific PCR. NC1 is the ninth
exon of CCNB1 and NC2 is the promoter of ACTB; both are negative controls.
SNRPD2 and QPCTL are divergently transcribed. The putative targets of E2F4
predicted by SubSTAGE are marked by an asterisk.
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RefSeq18,19, a final STAGE enrichment score was generated that was
indicative of the enrichment of its promoter in ChIP. The final
STAGE enrichment score for each gene was calculated by dividing
its raw score from the ChIP STAGE library by its raw score from the
appropriate background genomic STAGE library.
There were 48 putative targets of E2F4 with STAGE enrichment

scores greater than a threshold of 900 in either of the two STAGE

pools (Table 2). Raw scores and final STAGE enrichment scores are
available (Supplementary Table 2 online). Most targets were
designated by at least one tag with a single hit on the human
genome. In addition to previously known targets of E2F4 such as
RAD54L, SLC3A2 andMAP3K7, which had been identified using a
human core promoter microarray7, our analysis identified several
new targets that had not been identified in previous studies.We also

Table 2 | Human E2F4 targets predicted by STAGE

No. Gene Gene Score E2F4 site Description

1 MTUS1 1971 Mitochondrial tumor suppressor gene 1

2 ULBP3 1961 UL16 binding protein 3

3 SNRPD2* 1933 Small nuclear ribonucleoprotein D2 polypeptide, 16.5 kDa

QPCTL* 1923 Hypothetical protein FLJ20084

4 PXK 1015 PX domain–containing serine/threonine kinase

5 FLJ22353 993 Hypothetical protein FLJ22353

6 GAJ 993 Yes GAJ protein

7 ACR 992 Acrosin

8 RAD54L 992 RAD54-like (S. cerevisiae)

9 AAMP 982 Angio-associated migratory cell protein

10 ABHD2 982 Abhydrolase domain–containing 2

11 BLVRB* 982 Biliverdin reductase B (flavin reductase (NADPH))

SPTBN4* 982 Spectrin, beta, non-erythrocytic 4

12 DC2 982 DC2 protein

13 FLJ13912 982 Yes Hypothetical protein FLJ13912

14 FLJ25416 982 Hypothetical protein FLJ25416

15 FLJ32000 982 Yes Hypothetical protein FLJ32000

16 FLJ90834 982 Hypothetical protein FLJ90834

17 MPV17 982 Yes MpV17 transgene, murine homolog, glomerulosclerosis

18 PRCP 982 Prolylcarboxypeptidase (angiotensinase C)

19 PSMA4 982 Proteasome (prosome, macropain) subunit, alpha type, 4

20 RNF29 982 Ring finger protein 29

21 TOPK 982 Yes T-LAK cell–originated protein kinase

22 DRF1 974 Dbf4-related factor 1

23 LMO7 971 LIM domain only 7

24 SLC3A2 971 Yes Solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2

25 SOAT2 971 Sterol O-acyltransferase 2

26 ARHGAP11A 965 Yes KIAA0013 gene product

27 ABC1 961 Amplified in breast cancer 1

28 BTRC 961 Beta-transducin repeat containing

29 GAL3ST1 961 Cerebroside (3¢-phosphoadenylylsulfate:galactosylceramide 3¢) sulfotransferase
30 CSTF3 961 Cleavage stimulation factor, 3¢ pre-RNA, subunit 3, 77 kDa

31 CTAG3* 961 Cancer/testis antigen 3

RIOK1* 961 RIO kinase 1 (yeast)

32 DNALI1 961 Dynein, axonemal, light intermediate polypeptide 1

33 EPHA3 961 EPH receptor A3

34 FIBL-6 961 Yes Hemicentin

35 FLJ20712 961 Hypothetical protein FLJ20712

36 HIST2H2AC 961 Histone 2, H2ac

37 HOXA3 961 Homeobox A3

38 JPH2 961 Junctophilin 2

39 MAP3K7 961 Yes Mitogen-activated protein kinase kinase kinase 7

40 METAP2 961 Yes Methionyl aminopeptidase 2

41 PDGFA 961 Platelet-derived growth factor alpha polypeptide

42 RPL23A 961 Yes Ribosomal protein L23a

43 SNIP1 961 Yes Smad nuclear interacting protein

44 CCRL2 926 Chemokine (C-C motif) receptor-like 2

45 C20orf141 913 Chromosome 20 open reading frame 141

An asterisk indicates a bidirectional promoter (a promoter driving the expression of two mRNAs in opposite directions). The presence of consensus E2F4 binding sites in a 3 kb window spanning the
start of transcription is also indicated.
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calculated a significance value for each STAGE enrichment score.
All our putative targets (Table 2) had scores with P values much
lower than 0.01. The score for the ACTB (b-actin) gene used as a
negative control had a much higher P value (P 4 0.5).

Validation of STAGE in human cells
From the 45 putative target promoters (Table 2), we selected 18 for
validation by promoter-specific PCR. Primers were designed to
assay a region spanning theB400 bp upstream of the transcription
start site of each gene. We detected E2F4 binding to 15 promoters
(Fig. 3c). Including RAD54L (Fig. 3a), we could thus indepen-
dently verify 16 of 19 (84%) binding targets predicted by STAGE.
We used ChIP-chip to further verify the binding of E2F4 to

promoters identified by STAGE. DNA from an independent E2F4
ChIP was amplified and labeled with Cy5 and hybridized to a
9,500-element human core promoter microarray20 together with a
mock-immunoprecipitated sample labeled with Cy3. Many pre-
viously unknown E2F4 targets that we identified by STAGE were
indeed enriched in the independent ChIP-chip as indicated by high
red/green (Cy5/Cy3) ratios (Fig. 4a). STAGE identified increasing
numbers of genes as E2F4 targets with increasing enrichment in
ChIP-chip (Fig. 4b). Of the 48 E2F4 target genes identified by
STAGE, 26 were represented on the microarray. Ten of these (38%)
had ChIP-chip enrichment values in the top 5%, indicating they
were bona fide targets. The overlap between the targets identified by
STAGE and by ChIP-chip, although modest, was highly significant
(P o 10!7 based on sampling permutation), showing that STAGE
enables the identification of target loci in human cells. This overlap
between the targets identified by the two different technologies is
comparable to the 43% overlap we observed between our ChIP-
chip targets and the set of E2F4 targets previously reported in the
literature also using ChIP-chip7,8.
In addition to the identification of E2F4 targets based on the

occurrence of tags within a 3-kb window proximal to annotated
genes, we separately scored genes as putative targets based on the
presence of tags within a region from –10 kb to –6 kb or from –6 kb
to –2 kb relative to the start of transcription or within the first
intron. These analyses identified 48, 43 and 17 additional putative
targets, respectively (Supplementary Tables 3,4 and 5). Some of
these additional putative targets, such as ACR, FLJ22353 and
ULBP3, had also been identified in our analysis based on the

3-kb proximal region (Table 2). It is possible that E2F4 binds to
multiple sites at varying distances upstream of some of its target
genes. Approximately 1,400 unique STAGE tags were derived from
regions of the genome that were not within 10 kb upstream of, or
in, the first intron of any gene. Although we have not validated
these as true E2F4 binding sites, binding to sites outside promoters
would be consistent with recent reports describing such binding by
NF-kB9, c-myc and Sp1 (ref. 10).

DISCUSSION
Our results demonstrate the utility of STAGE as an unbiased geno-
mic method for identifying the chromosomal binding targets
of proteins. STAGE identified many new target genes of E2F4
in human fibroblasts that had not been identified in previous
studies using targeted core promoter microarrays or CpG
island microarrays7,8.
The fraction of orphan STAGE tags that did not match any

genomic sequence was generally 15–19%, similar to what has been
observed for SAGE13,21. Orphan tags likely arise from a combina-
tion of PCR and sequencing errors and cross-contamination from
unrelated DNA samples. Half of the 22% orphan tags we observed
in one instance in yeast consisted of repeated occurrences of just
two distinct tags. We did not observe these two tags in any other
STAGE pools. Although it is desirable to minimize the occurrence
of such orphan tags, they do not present a problem for STAGE, as
they are excluded from analysis.
Although there was significant overlap (P o 10!7) between the

E2F4 targets that we identified by ChIP-chip and by STAGE, the
agreement between the two technologies was not perfect. ChIP-
chip involves a complex hybridization step and can be affected by
the presence of repetitive DNA, poor PCR product in the micro-
array spot, differential amplification of ChIP DNA during fluo-
rescent labeling and hence low sensitivity or specificity at certain
loci. For example, we identifiedPSMA4 as an E2F4 target by STAGE
and validated it by ChIP-PCR, but it showed only marginal
enrichment in ChIP-chip (Fig. 4a). However, MAP3K7, a pre-
viously known target of E2F4 that we also identified by STAGE,
likewise did not show enrichment in our ChIP-chip, indicating that
ChIP-chip is not infallible. For this reason, we believe that the
standard low-throughput ChIP-PCR assay is a more reliable
measure of whether a locus is a true binding target.

Figure 4 | Validation by ChIP-chip of E2F4 targets
predicted by STAGE. DNA from an E2F4 ChIP was
amplified and labeled with Cy5, and hybridized to
a human core-promoter microarray together with
a mock IP sample labeled with Cy3. The ratio of
Cy5/Cy3 (red/green) signal is an indicator of
the binding of E2F4 to the locus at a given spot.
(a) New targets identified by STAGE (see Table 2
and Fig. 3c) include SNRPD2, QPCTL, DRF1,
ARHGAP11A, TOPK, CSTF3 and PSMA4. Previously
known E2F4 targets that were also identified by
STAGE are SLC3A2, RAD54L and MAP3K7. The ACTB
promoter is a negative control. (b) Correlation
between targets predicted by STAGE and ChIP-
chip. The average percentile rank (0–100) from
two microarray hybridizations, of the ratio of ChIP-enriched fragments to mock IP control DNA was determined for each spot on the microarray. For each interval
of E2F4 ChIP enrichment values plotted on the x-axis, the number of targets predicted by STAGE (total 26) is plotted on the y-axis. Ten STAGE predicted targets
rank in the top 5% of all spots on the microarray, corresponding to a red/green ratio42.0.
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Based on our ChIP-PCR analysis (Fig. 3a,c), we estimate the true
positive rate of STAGE in human cells isB84% in our experiments.
This success rate can potentially be improved by enhancements to
the analysis algorithms as well as improvements to the ChIP
procedure to reduce nonspecific DNA background. Subtraction is
one potential means of reducing background. However, it is
possible that the subtraction step may be effective only when the
initial ChIP enrichment is poor (Fig. 3b). The use of new type III
restriction enzymes generating 26-bp tags rather than 21-bp tags
may also improve the specificity of STAGE22. However, 70% of all
NlaIII-anchored 21-bp tags in the human genome were unique,
whereas 76% of all such 26-bp tags were unique. The improvement
in the ability to uniquely localize tags by increasing their lengths
from 21 to 26 bp is therefore not likely to be dramatic.
The comprehensiveness of STAGE, by analogy to SAGE, is

limited in principle only by the extent of sequencing. We identified
dozens of new E2F4 targets after sequencing a few thousand STAGE
tags, but we believe our coverage is not saturating for two reasons.
First, we observed minimal overlap between the tags generated
from the two independent STAGE pools and saw no significant
overlap between their predicted targets, even though we verified
targets from each pool. Thus, our sampling of tag space, although
valid, is relatively sparse. Second, a substantial fraction of the tags in
all the combined human STAGE pools was observed only once.
These observations suggest that E2F4 STAGE tags generated by
further sequencing are likely to be unique and will help predict
additional target genes. One way to estimate the false negative rate
in future studies would be to compare the predictions from STAGE
after saturation sequencing, with predictions made by analyzing
ChIP on complete tiling microarrays for a given chromosome9.
STAGE has many advantages for the analysis of genome-wide

DNA protein interactions, especially in large genomes. First, it does
not make assumptions about the location of protein binding sites
on the genome. 98% of the human genome is within 1 kb of an
NlaIII site, so binding sites anywhere can potentially be sampled by
STAGE. Second, it does not require expensive infrastructure. We
estimate that sequencing 30,000 tags, which should allow for
extensive coverage of the targets of a single protein, will entail
sequencing about 1,200 clones, a cost-efficient option. Third,
STAGE is readily applicable to any sequenced organism. Finally,
STAGE is not restricted to a specific annotation of a genome; as new
transcriptional units are discovered and existing ones become
defunct23,24, the same STAGE tag data can be reanalyzed to identify
targets based on revised genome annotations.
We envision STAGE as a useful complement to ChIP-chip for

analyzing the binding distribution of proteins on the genome.
Although STAGE is a high-throughput genomic method, it is less
suited than ChIP-chip for repeated quantitative measurements of
the binding of a protein under a range of physiological conditions.
However, the binding loci predicted by STAGE can be represented
on focused microarrays for ChIP-chip. Thus, an initial compre-
hensive survey of direct binding targets by STAGE, followed by
extensive ChIP-chip analysis, can accelerate the discovery of pro-
tein-binding regulatory elements in genomes.

METHODS
Cells and antibodies. Yeast cells with a 3!hemagglutinin (HA)-
tagged TBP25 were grown at 25 1C in synthetic complete medium
minus uracil, collected by centrifugation, resuspended in an

equal volume of prewarmed 39 1C medium and returned to
39 1C. After 10 min, cells were cross-linked by adding formalde-
hyde (final 1%). Anti-HA antibody (Santa Cruz) at a 1:100 dilution
was used for ChIP.
Human foreskin fibroblasts (ATCC CRL 2091) were grown to

60% confluence in 15 cm plates in DMEM containing glucose
(1 g/l), antibiotics, and 10% FBS (Hyclone). Cells were washed
twice with the same medium lacking FBS and low-serum medium
(0.1% FBS) was added. After 72 h, cells were cross-linked with
formaldehyde (final 1%). Anti-E2F4 antibody (sc-1082x, Santa
Cruz) at a 1:100 dilution was used for ChIP.

STAGE and SubSTAGE. Cross-linking, ChIP, and amplification of
ChIP DNA was performed as described previously26, except using
a 5¢-biotinylated primer during amplification. Further details of
ChIP protocols are described in Supplementary Methods online.
We then followed the LongSAGE protocol (http://www.sagenet.
org/), except used amplified, biotinylated ChIP DNA as the
starting material. Briefly, amplified DNA (1-2 mg) was digested
with NlaIII. The terminal DNA fragments were bound to strepta-
vidin-coated magnetic beads (Dynal) and separated into two
tubes. After ligation with linker 1 or 2, which contain recognition
sites for MmeI, the DNA fragments were released by MmeI
digestion. The released tags were ligated to generate ditags. Ditags
were amplified with nested primers, gel purified and trimmed by
NlaIII digestion. Trimmed ditags were gel purified, concatemer-
ized by ligation and cloned into the pZero 1.0 vector (Invitrogen).
Insert sizes were assayed in recombinant clones and clones con-
taining at least ten ditags were sequenced. Details of the subtrac-
tion step are provided in Supplementary Methods online. For the
mock immunoprecipitation control and reference samples (Figs. 3
and 4, respectively), the antibody was omitted. For the genomic
control STAGE pool, sheared normal human genomic DNA was
used as input into STAGE.

Data analysis and scoring. STAGE yields a list of tags with their
number of occurrences in the pool. This number is termed nocc.
Each valid STAGE tag has anywhere between one and several
thousand matches on the human genome. This number is termed
nhit. Our algorithm for defining target genes was as follows.
(1) Map the tags to the human genome. (2) Assign a score to
each tag based on nocc and nhit. (3) For each human gene, identify
tags within a user-defined window. (4) Calculate a cumulative
score for the gene based on the scores of all tags in the given
window. (5) Compare these scores to the experimental and
computational control. (6) Genes that show a substantially higher
score than the control are putative targets. Further details of the
scoring algorithm are provided in Supplementary Methods
online. For all analyses, we used the July 2003 build of the Human
Genome sequence assembly available at http://genome.ucsc.edu.
Genes used in our analysis were based on the RefSeq Genes
annotation at the University of California, Santa Cruz19.

Controls and P values for STAGE enrichment scores. For an
experimental control, we performed STAGE on input genomic
DNA without ChIP and calculated background gene scores for all
genes in the same manner as described above for STAGE from an
actual ChIP. Raw gene scores derived from ChIP STAGE were
divided by control scores to obtain the final STAGE enrichment
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score. To calculate a P value for the STAGE enrichment score,
2,000 tags were computationally selected at random from the
redundant pool of all CATG 21-mers in the genome and used to
generate scores for each gene as described above. This process was
iterated 500 times to obtain a distribution of 500 scores for each
gene. For each gene, these scores were fitted to a normal distribu-
tion. The experimentally determined STAGE enrichment score for
a particular gene was compared to this distribution and a P value
for the score was obtained. Experimental scores with P values less
than 0.01 were taken to be significant.

Microarrays. Yeast microarrays including all ORFs and intergenic
elements were manufactured as described previously5,26. PCR
amplification, fluorescent labeling of ChIP DNA fragments and
hybridization were performed as described previously26. The
reference hybridization probe was generated from sonicated nor-
mal yeast genomic DNA processed identically to the probe for
ChIP DNA samples. A GenePix 4000B scanner and GenePix Pro
4.0 software (Axon Instruments) were used for scanning and
quantitation. Data were uploaded to a local database for analysis27.
The enrichment value of TBP ChIP was calculated by ranking
genomic loci according to their red/green fluorescence ratios. We
determined the percentile rank (0–100) for each array element and
either used it directly as a measure of binding (Fig. 2b) or used the
average percentile rank for each element from two replicate
hybridizations (Fig. 2a). When multiple microarray elements
could potentially represent the promoter of a gene, we averaged
their percentile ranks.
PCR primer pairs for human core promoters20 were purchased

from the Whitehead Institute (Cambridge, Massachusetts, USA).
Promoters were amplified by PCR as recommended by the
manufacturer, and microarrays were manufactured as previously
described26. PCR products corresponding to 33 additional pro-
moter and control loci, including the genes listed in Supplemen-
tary Table 6 online, were included on the array. E2F4 ChIP DNA
fragments and the mock IP reference samples were amplified and
labeled by ligation-mediated PCR, using Cy5 and Cy3, respec-
tively6. The two fluorescently labeled samples were simultaneously
hybridized to the promoter microarray and ChIP enrichment of
target loci was calculated by ranking the Cy5/Cy3 (red/green)
fluorescence ratios.

PCR and primers. Thirty cycles of PCR were performed for the
samples in Figure 4 in a 25-ml reaction volume with 1 ml (4%) of
immunoprecipitated material. Primers were designed to assay ap-
proximately between –400 bp and +1 of the transcription start site.
The ninth exon of CCNB1 and the core promoter of ACTB were
negative controls NC1 and NC2, respectively (Figs. 3a–c and 4a).
Primer sequences are provided in Supplementary Table 6 online.

Accession numbers. Microarray data have been deposited in
NCBI’s Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/) and are accessible through GEO Series accession
number GSE1861.

Note: Supplementary information is available on the Nature Methods website.
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Mapping the chromosomal targets of STAT1
by Sequence Tag Analysis of Genomic
Enrichment (STAGE)
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Identifying the genome-wide binding sites of transcription factors is important in deciphering transcriptional
regulatory networks. ChIP-chip (Chromatin immunoprecipitation combined with microarrays) has been widely used
to map transcription factor binding sites in the human genome. However, whole genome ChIP-chip analysis is still
technically challenging in vertebrates. We recently developed STAGE as an unbiased method for identifying
transcription factor binding sites in the genome. STAGE is conceptually based on SAGE, except that the input is
ChIP-enriched DNA. In this study, we implemented an improved sequencing strategy and analysis methods and
applied STAGE to map the genomic binding profile of the transcription factor STAT1 after interferon treatment.
STAT1 is mainly responsible for mediating the cellular responses to interferons, such as cell proliferation, apoptosis,
immune surveillance, and immune responses. We present novel algorithms for STAGE tag analysis to identify
enriched loci with high specificity, as verified by quantitative ChIP. STAGE identified several previously unknown
STAT1 target genes, many of which are involved in mediating the response to interferon-! signaling. STAGE is thus
a viable method for identifying the chromosomal targets of transcription factors and generating meaningful
biological hypotheses that further our understanding of transcriptional regulatory networks.

[Supplemental material is available online at www.genome.org.]

The ENCODE project has suggested that a larger fraction of the
human genome than previously suspected may be transcription-
ally active (The ENCODE Project Consortium 2006). Correspond-
ingly, a significant fraction of the genome is likely to be involved
in regulating gene expression and other aspects of human biol-
ogy. Much of the regulatory potential of cis-acting sequences in
the genome involves interactions of proteins with DNA. Identi-
fying the genomic binding sites of regulatory proteins such as
transcription factors is important for cataloging the regulatory
potential encoded in the human genome and reconstructing
transcriptional regulatory networks. Chromatin immunoprecipi-
tation (ChIP) combined with microarray hybridization (ChIP-
chip) has enabled global mapping of transcription factor binding
sites in the human genome (Kim et al. 2005a; Lee et al. 2006).
Although whole-genome oligonucleotide tiling arrays are becom-
ing available for ChIP-chip analyses, they remain expensive and
entail specialized resources. Another limitation with the use of
tiling arrays is that they typically do not cover repetitive se-
quences, which account for a significant fraction of the genome.
For example, recent “whole-genome” tiling arrays included only
∼50% of the genome that was nonrepetitive (Kim et al. 2005a;
Lee et al. 2006). Binding sites and functional elements that lie

near repetitive sequences are therefore likely to be undetected
through the use of such arrays. Many tiling array platforms cur-
rently need seven to a few dozen arrays to cover the genome,
requiring significant scale up of antibody, cell culture material,
and effort, especially if replicate experiments are performed.

We have developed an unbiased genomic method to map
transcription factor binding sites called STAGE (Sequence Tag
Analysis of Genomic Enrichment), based on sequencing “tags” or
short oligonucleotide signatures from ChIP-enriched DNA (Kim
et al. 2005b). Since it is not constrained by the availability of
tiling microarrays for any particular organism, STAGE makes it
possible to experimentally determine whether the target genes of
a transcription factor in one species are also targets in a related
species. Similar sequencing-based approaches for identifying
transcription factor targets have recently also been indepen-
dently developed in other labs (Impey et al. 2004; Roh et al. 2004,
2005; Chen and Sadowski 2005; Loh et al. 2006; Wei et al. 2006).

In order to make STAGE more competitive with genome-
wide tiling arrays, we have now developed modifications that
exploit new developments in sequencing technology. Here we
use STAGE for analysis of the targets of the transcription factor,
STAT1. We used bead-based pyrosequencing (454) technology to
improve the throughput and cost-effectiveness of sequencing
and significantly reduce the time and effort needed to perform
STAGE (Margulies et al. 2005). STAT (Signal Transducer and Ac-
tivator of Transcription) proteins are transcription factors that
mediate cytokine and growth factor signaling. Interferons modu-
late cell proliferation, apoptosis, immune surveillance, and im-
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mune responses primarily via the JAK-STAT pathway (Platanias
2005). Interferon (IFNG) specifically activates STAT1 which
forms homodimers, translocates to the nucleus, and binds to
promoters bearing the gamma-activation sequence (GAS) motif
and activates (IFNG) inducible genes (Ramana et al. 2000). ChIP-
chip analysis of STAT1 targets on chromosome 22 revealed that
STAT1 regulates several genes involved in cell growth, apoptosis,
immune responses, and lipid metabolism (Hartman et al. 2005).
We used STAGE to identify genome-wide STAT1 binding targets
after interferon (IFNG) treatment. We also developed improved
analysis algorithms to identify target sites with high specificity.
Our results indicate that IFNG-induced STAT1 binds to a large
number of sites genome-wide and that many of these sites lie
proximal to genes that are involved in biological processes
modulated by IFNG.

Results

Identifying STAGE tags for STAT1 by bead-based
pyrosequencing

DNA bound by STAT1 in IFNG-treated HeLa cells was isolated by
ChIP. We generated ditags as described before (Kim et al. 2005b)
and amplified ditags by PCR. Amplified ditags were sequenced by
454 Inc., but without the initial nebulization step normally used
in their procedure to shear the DNA. Thus, each read typically
contained a complete STAGE ditag, flanked by primer sequences.
We sequenced a total of 179,954 reads from the STAT1 STAGE tag
library, representing about 17 Mb of sequence from one run.
After removing duplicate reads, we were able to extract 162,577
tags; 31,353 tags (19%) could not be matched to any location in
the genome and were considered orphans. The remaining
131,224 tags were used for further analysis.

If STAGE tags are derived from ChIP-enriched DNA, then
the distribution of tags in the STAGE library should deviate from
a randomly selected population of tags. We simulated back-
ground tag libraries in silico by randomly selecting the same
number of tags (131,224 for STAT1) from the entire genome mul-
tiple times. Tags that had more than one hit, i.e., a perfect match,
on the genome were ignored. The average frequency distribution
of single-hit tags in the random library was compared with the
experimental STAT1 STAGE library. For a frequency of occur-
rence of 1, the numbers of tags in the random and real data were
similar. However, for a frequency of occurrence of 2 and more,
there was strong enrichment in the STAGE library over back-
ground (Fig. 1). Thus, the STAGE tags generated by 454 sequenc-
ing represented DNA that was distinct from simulated random
genomic DNA.

STAGE targets for STAT1

Since ∼50% of the human genome consists of repeat sequences, a
given tag in the STAGE library may map to multiple locations in
the genome. A tag that is represented in the genome at multiple
locations would be more likely to be found in the STAGE library
by random chance. Hence, a higher frequency of occurrence of a
tag in the STAGE library does not necessarily reflect the enrich-
ment of the tag in the ChIP-enriched DNA. To exclude such
ambiguous tags in our analysis, we calculated the probability that
a given tag was truly enriched over background by ChIP. Each tag
was first assigned a probability of enrichment by assuming that
the selection of tags from the genome follows a binomial distri-

bution. Details of the calculations and the algorithm we devel-
oped to identify significant targets are included in the Methods.
Since STAGE tags are derived from ChIP-enriched DNA, multiple
tags can be expected to cluster within short regions in the ge-
nome similar in size to the fragments isolated by ChIP, as com-
pared to a random library representing no enrichment, where the
tags would be expected to be sampled uniformly across wide
regions in the genome. We used this rationale to define binding
targets. We performed a simulation where we scanned windows
of different sizes across each chromosome and counted the fre-
quencies of windows containing different numbers of single-hit
tags. For each window size, we determined whether there were a
larger number of windows containing a given number of single-
hit tags in the real STAGE library as compared to a simulated
random library of STAGE tags. A window of 500 bp gave a false
discovery rate (FDR) based on simulations of <5% for STAT1
while the number of targets detected was 734 (Fig. 2). The com-
plete set of data for all window sizes used is given in Supplemen-
tal Table 1. We used a window of 500 bp for all further analysis.
To improve the specificity of target detection, a window was
considered a target only if at least one tag within that window
was deemed to be enriched. Thus, for each window we calculated
two probabilities, namely, the probability of finding a given
number of single-hit tags and the probability that at least one of
those tags was statistically likely to be enriched. To avoid assign-
ing high probabilities to windows that contained only a single
enriched tag, we gave greater weight to the probability of finding
a given number of single-hit tags within a window than to the
probability of simply finding any enriched tags in that window.
This combined probability calculation gave us a false discovery
rate of <1% at a probability threshold of 0.95. It should be noted,
however, that this false discovery rate is based on in silico analy-
sis under the assumption that selection of STAGE tags follows a
binomial distribution. It is possible that experimental manipula-
tions introduce biases that were not modeled in the simulation.
STAGE detected 381 binding sites for STAT1 in the entire genome

Figure 1. Comparison of the STAT1 STAGE tag library with a simulated
randomly generated background library. A background library was gen-
erated to simulate STAGE tag libraries by randomly selecting the same
number of tags from the genome as the experimental STAGE library. This
procedure was repeated 20 times and the values were averaged. Only
tags with a single, unique hit on the genome were used in this analysis.
The numbers of single-hit tags (Y-axis) were plotted against the frequen-
cies of those tags in the random (gray bars) and experimental (black bars)
tag library (X-axis). For frequencies of 2 and above, the STAGE tag library
for STAT1 shows a clear enrichment over a randomly generated tag li-
brary.

STAT1 targets identified by STAGE
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at this threshold. Based on annotations in the RefSeq gene data-
base (Pruitt et al. 2005), 68% of the STAT1 binding sites found by
STAGE were within 50 kb of the transcription start site (TSS) of a
gene, 70% of which were found within 20 kb (Table 1).

Verification of STAT1 targets by ChIP-chip
and quantitative ChIP

Seven of the 381 STAT1 binding sites identified in the genome by
STAGE were within the ENCODE regions. Three of these seven
targets overlapped with a ChIP-chip peak where the STAT1 ChIP-
chip was performed on ENCODE region tiling oligonucleotide
arrays (Fig. 3A; The ENCODE Project Consortium 2007). To ob-
tain a quantitative estimate of the false positive rate of our STAGE
analysis, we selected 10 target sites identified by STAGE that had
probabilities ranging from 0.95 to 1.0 and assayed their enrich-
ment in a biologically independent STAT1 ChIP sample. Nine out
of these 10 sites showed a quantitative enrichment in the ChIP
sample relative to the input, with eight of them showing an
enrichment of more than twofold (Fig. 3B). Thus, we estimate
our true positive rate to be ∼90% giving a false positive rate of 0.1.
We also compared STAT1 target genes identified by STAGE to
STAT1 target promoters that we identified by ChIP-chip using a
global core-promoter microarray. The core-promoter microarray
included 9764 different promoters where a promoter was defined
as 1 kb upstream of and 200 bp downstream from the TSS of a
gene. ChIP-chip revealed 157 promoters to be bound by STAT1 at
an enrichment ratio greater than threefold. Twenty-nine out of
these 9764 promoters had a high-confidence STAT1 binding site,
as identified by STAGE, between 1 kb upstream of and 200 bp
downstream from the TSS, and 11 out of these 29 were in com-
mon with the targets identified by ChIP-chip (Fig. 4A). Under a

hypergeometric distribution, this overlap was significant at a P-
value <10!12.

Enrichment of motifs in STAT1 targets

If a STAT1 binding site detected by STAGE occurred within 1 kb
upstream of and 200 bp downstream from the TSS of a gene, we
considered that gene to be a STAT1 target. STAGE detected 59
genes in RefSeq as STAT1 targets by the above criteria (Supple-
mental Table 2). Sixty-two percent of these target genes (37/59)
had the GAS STAT1 motif TTCNNNGAA within 1 kb upstream of
and 200 bp downstream from the TSS of the gene. This repre-
sented a motif enrichment among target promoters of more than
twofold compared to background. The background in this case
was considered as 1 kb upstream of and 200 bp downstream from
the TSS of all genes in RefSeq. This enrichment was statistically
significant (P-value <10!8) assuming a hypergeometric distribu-
tion.

We applied the same analysis for all STAT1 binding sites in
the entire genome. For each window detected as a STAT1 binding
site, we searched for the STAT1 GAS motif in that window ex-
tending our search to 250 bp on either side of the window. Out
of 381 binding sites detected by STAGE, 226 (59.32%) had the
GAS consensus sequence. This represents an enrichment of more
than twofold over background level of occurrence of the GAS
motif in randomly selected windows from the entire genome
(P-value <10!43) (Fig. 4B). Additionally, in accordance with the
fact that STAT1 is known to exhibit cooperative binding with
other transcription factors like AP1, MYC, and NFKB, we found
an enrichment for the STAT1 motif along with motifs for AP1
(Eferl and Wagner 2003), MYC (Adhikary and Eilers 2005), and
NFKB (Martone et al. 2003) (Fig. 4B).

Genes proximal to STAT1 binding sites

STAGE identified several previously unknown STAT1 target genes
(Supplemental Table 2), many of which are involved in IFNG
signaling. One of these was DAPK3 (death-associated protein ki-
nase 3), a positive regulator of programmed cell death. DAPK3
induces apoptosis by associating with the pro-apoptotic protein
DAXX. IFNG is known to increase DAPK3–DAXX complex for-
mation and this complex is necessary for induction of caspases
and IFNG-mediated apoptosis (Kawai et al. 2003). STAT1 modu-
lation of DAPK3 could thus represent one mechanism by which
IFNG can induce apoptosis. DAPK3 phosphorylates MDM2 and
(CDKN1A), components of the TP53 pathway (Burch et al. 2004),
and its identification as a STAT1 target suggests a novel collabo-
ration between the IFNG/STAT1 apoptotic pathway and the TP53
tumor suppressor pathway. Another possible mechanism for

Table 1. Percentage distribution of STAT1 binding sites in the
entire genome that were proximal to RefSeq annotated genes

Position of binding sites Percentage of binding sites

Relative to transcription start sites
of the gene (percentage of total sites)

Within 50 kb 68%
Within 20 kb 47%
Within 20 kb upstream 24%
Within 20 kb downstream 23%

Sites found internal to genes (percentage
of internal sites found within 20 kb)

First exon 18%
First intron 42%

Figure 2. Determination of optimal window size used for target iden-
tification. Windows of different sizes (300, 500, 1000, and 2000 bp) were
scanned across the entire genome. For each window, we defined k as the
number of single-hit tags found within the window. The number of win-
dows observed for a given k in the STAGE tag data was compared with
the number observed in random simulated data. A window size of 500 bp
gave an optimal separation between random and real data. Data shown
is for a window size of 500 bp. The gray bars indicate log10 of the number
of windows detected based on STAT1 tags, with actual numbers of win-
dows at each k listed at the top of the column. The black line shows the
decline in the false discovery rate (FDR) with increasing k. The FDR was
calculated as the ratio of the number of windows found in the random
simulated library to the number of windows detected in the experimental
STAT1 library. The raw data for other window sizes is included in Supple-
mental Table 1.
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IFNG-mediated apoptosis was suggested by the observation that
APOL6, which induces mitochondria-mediated apoptosis charac-
terized by the release of cytochrome-c and activation of caspase-9
(Liu et al. 2005), was also identified as a STAT1 target by STAGE.

STAT3 is anti-apoptotic and induces cell proliferation while
STAT1 promotes growth arrest and apoptosis (Stephanou et al.
2000; Stephanou and Latchman 2005). In mouse embryonic fi-
broblasts, it was shown that IFNG induces high levels of expres-
sion of STAT1 while STAT3 levels remain low. However, in the
absence of STAT1, i.e., in STAT1!/! cells, IFNG stimulation in-
duces high levels of STAT3 gene expression (Ramana et al. 2005).
Our data implicating STAT3 as a direct transcriptional target of
STAT1 suggest that STAT1 represses STAT3 during IFNG signal-
ing, further promoting its own apoptotic function.

Tumor necrosis factor (TNF) is cytokine that is involved in a
plethora of cellular responses including cell differentiation, sur-
vival, and apoptosis. TNF binds to its receptor TNFRSF1A (Tumor
Necrosis Factor Receptor Super Family 1A) and causes NFKB ac-
tivation, which is crucial for the expression of many proinflam-
matory cytokines, chemokines, and multiple regulators of

apoptosis and cell differentiation. In the absence of IFNG stimu-
lation, cytoplasmic STAT1 binds to TNFRSF1A and maintains a
tight control over TNF-mediated NFKB activation. However,
IFNG stimulation was shown to increase sensitivity of cells to
further TNF stimulation (Wesemann and Benveniste 2003).
STAGE identified a STAT1 binding site in the first intron of
TNFRSF1A, suggesting the possibility that IFNG dependent in-
creased sensitivity to TNF could be a direct result of activation of
TNFRSF1A by IFNG-stimulated STAT1. All the target sites and
genes described above were verified by quantitative ChIP from an
independent ChIP sample (Fig. 3B). We also identified other pre-
viously known STAT1 targets such as IRF1, HLA-E, ICAM1, as well
as STAT1 itself, whose expression is known to be induced by
IFNG. The complete list of STAT1 targets identified by STAGE is
provided in Supplemental Table 2.

Identification of MYC targets within the ENCODE regions
by STAGE

We also used STAGE to identify the targets of MYC, an important
oncogenic transcription factor. We carried out ChIP using an
antibody against MYC in HeLa cells followed by the STAGE pro-
cedure. We sequenced ∼4500 clones using standard sequencing
methodology for generating the MYC STAGE library. Each clone
contained on average ∼20–30 STAGE tags. Out of a total of
127,351 tags extracted for MYC, 19,867 (15%) were orphans that
could not be mapped to the human genome. We used the re-

Figure 3. (A) STAT1 binding sites in the ENCODE regions. A portion of
the ENCODE region ENm002 is shown as displayed in the UCSC Human
Genome Browser. Three out of the seven STAT1 binding sites identified
by STAGE matched STAT1 binding sites identified by ChIP-chip analysis
performed on NimbleGen ENCODE region tiling arrays. Transcripts iden-
tified in this region by the GENCODE project are shown in green. The
bottom shows raw ratio data as well as peak calls for STAT1 binding sites
from NimbleGen ChIP-chip data. (B) Quantitative ChIP analysis of bind-
ing sites identified by STAGE. Nine out of 10 binding sites detected by
STAGE were validated as true binding loci by quantitative PCR. Columns
show fold enrichment of each locus in the ChIP sample relative to input
DNA, normalized to an unrelated control locus. STAGE detected two
binding sites separated by >1500 bp in the IRF1 promoter which are
indicated in the figure. IRF-D indicates the distal (IRF1-distal) and IRF1-P
indicates the proximal site (IRF1-proximal). No genes were found in the
proximity of the site indicated as chr22-34786430.

Figure 4. (A) Overlap of STAT1 target genes identified by STAGE with
STAT1 target genes identified by ChIP-chip using a core promoter array.
STAGE identified 29 promoters out of the ∼9000 promoters present on
the core promoter array as STAT1 target promoters. Eleven out of these
29 overlapped with the 157 promoters identified as STAT1 targets by
ChIP-chip analysis at an enrichment ratio greater than threefold. The
enrichment ratio refers to the ratio of the fluorescence intensity of ChIP
DNA to that of reference DNA at each spot on the core promoter micro-
array. (B) Motif analysis. The Y-axis shows the percentage counts of the
number of sites bearing the given motif(s) out of the 381 STAT1 binding
sites detected by STAGE. Almost 60% of the 381 binding sites had the
STAT1 motif TTCNNNGAA as compared to 27% in the background. We
also detected an enrichment for the co-occurrence of the binding motifs
for STAT1 and AP1 (TGAG/CTCA), STAT1 and MYC (CACA/GTG), and
STAT1 and NFKB (GGGA/GNNC/TC/TCC) in accordance with the fact
that STAT1 exhibits cooperative binding with these factors to regulate
downstream promoters.
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maining 107,484 tags for further analysis. Based on extrapola-
tions from our ChIP-chip data (below) and previous observations
(Cawley et al. 2004), MYC is likely to have between 17,000 and
25,000 binding sites on the genome. Because our depth of se-
quencing of STAGE tags for MYC was slightly lower than for
STAT1, and the possibility that MYC may have a larger number of
binding targets on the genome, the high specificity algorithm we
developed for identifying STAT1 targets did not yield a signifi-
cant number of binding targets for MYC. We therefore used a
more relaxed algorithm as described in Methods to identify 2218
binding sites for MYC in the entire genome at a probability
threshold of 0.8. We calculated the false discovery rate based on
simulations at this threshold to be 5%. Twenty-six of the MYC
binding sites identified by STAGE occurred within the ENCODE
region. We also identified MYC binding sites within the
ENCODE regions by ChIP-chip using NimbleGen oligonucleo-
tide tiling arrays (The ENCODE Project Consortium 2007). The
ChIP-chip analysis included three biological replicates, and we
defined MYC binding peaks in the ENCODE regions using
NimbleGen SignalMap software. Fourteen out of the 26 MYC
binding sites identified by STAGE within the ENCODE regions
were within 500 bp of a ChIP-chip peak in at least one of the
three biological replicate experiments.

Discussion
Bead-based pyrosequencing technology has several advantages
for STAGE over standard sequencing approaches (Margulies et al.
2005). First, there is no requirement for cloning and isolation of
independent recombinant clones. Rather, tags generated by the
STAGE procedure can be directly sequenced. Potential biases in-
troduced by cloning in bacteria can thus be avoided. Second, the
water-in-oil emulsion that is generated in making the library can
be stored, and only a portion of this sample is used to generate on
the order of 200,000 sequence reads in a single run of the instru-
ment. Thus from a single chromatin immunoprecipitation reac-
tion performed from a normally grown culture of mammalian
cells, it is possible to sequence many samples and together gen-
erate more than one million sequence reads amounting to >100
Mb of sequence using STAGE, greatly improving the depth of
sequencing and coverage of targets enriched in the ChIP sample.
Third, bead-based pyrosequencing is more cost-effective. In our
experience, the price of sequencing a STAGE tag using 454 Inc.’s
service was about one-fifth that of standard clone-based sequenc-
ing (2.5 cents per tag for 454 vs. 14 cents per tag for clone-based
sequencing). It is possible to modify the STAGE procedure such
that each pyrosequencing read covers four tags, improving the
cost-effectiveness and coverage by twofold.

We have developed analysis algorithms to detect genomic
binding loci with high specificity. A recently developed algo-
rithm, START, is also aimed at detecting transcription factor tar-
gets using ChIP-derived tag libraries (Marinescu et al. 2006).
START uses a gene-centric approach where a user-defined win-
dow upstream of or downstream from a gene is searched to map
tags and genes are denoted as targets using a z-score. START is
thus limited to detecting binding sites near the 5" end of a gene.
Our approach defines enriched loci in the whole genome and
then identifies genes that lie proximal to these binding sites,
enabling identification of binding sites that may have long-range
effects on the regulated gene. START does not assign statistical
significance to clusters of tags that are not centered on a gene.

Finally, START does not make any attempt to distinguish tags
that are enriched from tags that might simply be noise, while we
assign each tag a probability of enrichment to better distinguish
noise from signal.

The currently implemented algorithm is an improvement
over the previously employed algorithm (Kim et al. 2005b) to
assign probabilities to STAGE-detected binding sites. Though the
older algorithm assigned probabilities based on tag enrichment
and rewarded clustering of tags, it did not make any attempt to
differentiate if a given cluster is significant or not. The current
algorithm assigns each cluster a probability of significance and
employs individual tag enrichment as an additional criterion to
compute a combined probability. This enables a more stringent
assessment of whether a given window is a binding site or not.
Overall, our results indicate that in depth sequencing using
STAGE can identify biologically relevant direct binding targets of
transcription factors throughout the genome.

Methods

ChIP for STAT1 and MYC
STAT1 ChIP was performed in HeLa S3 cells that were induced
with 5 ng/mL human recombinant IFNG (R&D Systems) for 30
min and then fixed with 1% formaldehyde at room temperature
for 10 min. Fixation was quenched with 125 mM glycine and
cells were lysed in hypotonic lysis buffer (20 mM HEPES, pH 7.9,
10 mM KCl, 1 mM EDTA, pH 8, 10% glycerol, 1 mM DTT, 0.5 mM
PMSF, 0.1 mM sodium orthovanadate, and protease inhibitors).
Cell lysates were homogenized and nuclear pellets were collected
and lysed in RIPA buffer (10 mM Tris-Cl, pH 8.0, 140 mM NaCl,
1% Triton X-100, 0.1% SDS, 1% deoxycholic acid, 0.5 mM PMSF,
1 mM DTT, 0.1 mM sodium orthovanadate, and protease inhibi-
tors). Nuclear lysates were sonicated with a Branson 250 Sonifier
(output 20%, 100% duty cycle) to shear the chromatin to ∼1 kb
in size. Clarified lysates were incubated overnight at 4°C with
anti-STAT1 alpha p91 (C-24) rabbit polyclonal antibody (sc-345
from Santa Cruz Biotechnology). Protein–DNA complexes were
precipitated by protein A agarose and immunoprecipitates were
washed three times in 1# RIPA, once in PBS, and then eluted.
Crosslinks were reversed overnight at 65°C, and ChIP DNA was
purified by Proteinase K treatment followed by extraction with
phenol:chloroform:isoamyl alcohol extraction and precipitation
with ethanol. Chromatin immunoprecipitation was performed
for MYC in HeLa cells using anti-myc antibody (SC-764x from
Santa Cruz Biotechnology) using the same protocol as described
previously for E2F4 (Kim et al. 2005b).

STAT1 and MYC tag libraries
The STAGE procedure was modified for generating the STAT1 tag
library. All steps leading to the generation of ditags from ChIP-
enriched DNA were performed exactly as for MYC below. Gel-
purified ditags were amplified by PCR using linker specific prim-
ers and sequenced by 454 Inc. Duplicate reads were removed by
a Perl script. For MYC, the STAGE procedure was carried out as
described previously (Kim et al. 2005b). Purified clones were se-
quenced by Agencourt Inc. Twenty-one-base-pair tags were ex-
tracted from each read using Perl scripts.

Generating hits for STAGE tags on the genome
We used the May 2004 Build 35 Human Genome assembly avail-
able at http://genome.ucsc.edu for all analyses. Twenty-one-base-
pair tags were matched to the genome as described previously
(Kim et al. 2005b). Briefly, an indexed, custom database of all

Bhinge et al.

914 Genome Research
www.genome.org

 on June 13, 2007 www.genome.orgDownloaded from 

http://www.genome.org


CATG(N)17 sequences in the genome was first created. This rep-
resents a database of all possible STAGE tags using NlaIII, where
each tag sequence was keyed to its chromosome and nucleotide
coordinates. Each STAGE library tag was now mapped to the
indexed genome-wide tag database by a simple binary search
algorithm (Cormen et al. 2001).

Assigning probabilities for tag enrichment
We defined the number of distinct positions in the genome con-
taining a perfect match to a given tag in the STAGE library as nhit.
Thus, a tag with a nhit of 1 meant that this tag mapped to a single
unique location in the human genome. We defined the number
of occurrences of the tag in the sequenced STAGE library, that is,
the number of times a given tag was observed in the STAGE
library, as nocc. The selection of N tags at random from the entire
genome could be modeled as a binomial distribution where the
success of an event is defined as selecting a tag with a given nhit.
The background probability of selection of a tag with a given nhit
was calculated as p = nhit/total number of tags in the genome. If
an observed tag with a given nhit has a nocc = f, we calculated the
probability of selecting a tag with the observed nhit and nocc " f
under a random model. This probability was calculated as 1 mi-
nus the cumulative binomial probability of selecting that par-
ticular tag with a frequency #f ! 1, which was calculated as

!1 − "
0

f−1

!x
N#p x!1 − p#N−x#

where p is the background probability of selection of the tag and
x iterates from 0 to f ! 1.

Multiplying this probability by the total number of tags
found in the genome having the given nhit yields the expected
frequency of selecting tags with the given nhit and nocc " f

Thus, the expected frequency of a tag with a given nhit and
nocc = f when N tags are selected at random was calculated as

Expected frequency =

!1 − "
0

f−1

!x
N#px!1 − p#N−x# M

where p = nhit/T, and T is the total number of 21 bp CATG(N17)
tags found in the entire genome (27,429,149). M = number of
tags with a given nhit.
Probability that a given tag is enriched =

!1 −
expected frequency
observed frequency".

If the expected frequency was greater than the observed fre-
quency, the tag was assigned a low enrichment probability of
0.001.

STAGE target calls for STAT1
A window size of 500 bp was used as described above. For each
window, we defined k = number of tags assigned to the window
with a single hit on the genome.

Probability that the window is a target = wt_nhit* Phit+
wt_nocc *Pnocc, where

Phit = 1 −
expected frequency of windows with given k
observed frequency of windows with given k

.

The expected frequency of a window with a given k was
obtained from random simulations. It is also possible to calculate
this expected frequency and avoid time-consuming random
simulations.

Pnocc was calculated as the probability that at least one tag
assigned to the window was not random:

Pnocc = 1 − $
i
!1 −

p!tagi#

nhiti
"

where p(tagi) is the probability that tagi was enriched. wt_nhit and
wt_nocc were empirically derived weights and were set to 0.9 and
0.1, respectively.

STAGE target calls for MYC
A window of size 500 bp was scanned across each chromosome,
and tags mapping within the window were assigned to the win-
dow. For the MYC analysis, we discarded tags that had more than
10 hits on the genome.

Probability that the window is a target =

1 − $
i

!1 − p!tagi##.

Quantitative ChIP PCR for binding sites identified by STAGE
We performed quantitative PCR on an independent IFN-!-
stimulated STAT1 ChIP DNA sample. We selected 10 sites to test,
spanning a range of final STAGE probability scores. For each of
the 10 selected binding sites, we extended the site by 100 bp on
either side. Primers were designed to amplify 60–100 bp frag-
ments within the extended window. Quantitative PCR reactions
were performed in triplicate in a 96-well optical reaction plate
(ABI PRISM) using SYBR Green PCR Master Mix (Applied Biosy-
tems) on an ABI 7900 instrument. The –$$Ct values for each
locus were calculated with respect to the ChIP input DNA, nor-
malized to a reference locus (GAPDH gene promoter) as described
(Livak and Schmittgen 2001). Data for the nine sites that could
be confirmed are shown in Figure 3B. Primer sequences are pro-
vided in Supplemental Table 3.
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The eukaryotic genome is packaged as chromatin with nucleosomes comprising its basic structural unit, but the
detailed structure of chromatin and its dynamic remodeling in terms of individual nucleosome positions has not been
completely defined experimentally for any genome. We used ultra-high–throughput sequencing to map the
remodeling of individual nucleosomes throughout the yeast genome before and after a physiological perturbation that
causes genome-wide transcriptional changes. Nearly 80% of the genome is covered by positioned nucleosomes
occurring in a limited number of stereotypical patterns in relation to transcribed regions and transcription factor
binding sites. Chromatin remodeling in response to physiological perturbation was typically associated with the
eviction, appearance, or repositioning of one or two nucleosomes in the promoter, rather than broader region-wide
changes. Dynamic nucleosome remodeling tends to increase the accessibility of binding sites for transcription factors
that mediate transcriptional changes. However, specific nucleosomal rearrangements were also evident at promoters
even when there was no apparent transcriptional change, indicating that there is no simple, globally applicable
relationship between chromatin remodeling and transcriptional activity. Our study provides a detailed, high-
resolution, dynamic map of single-nucleosome remodeling across the yeast genome and its relation to global
transcriptional changes.

Citation: Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, et al. (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to
transcriptional perturbation. PLoS Biol 6(3): e65. doi:10.1371/journal.pbio.0060065

Introduction

The eukaryotic genome is compacted into nucleosomal
arrays composed of 146-bp DNA wrapped around a core
histone octamer complex [1]. The location of nucleosomes
affects nearly every cellular process requiring access to
genomic DNA, but it is not well understood how nucleosomes
are positioned and remodeled throughout any genome.
Mapping nucleosome positions using DNA microarrays
covering 4% of the yeast genome has shown that a majority
of assayable nucleosomes were well positioned [2]. Computa-
tional analyses incorporating structural mechanics of nucle-
osome associated DNA [3–5] and comparative genetics [6]
have predicted nucleosome positions in the yeast genome.
However, experimental validation and comparison with
available in vivo data show that intrinsic signals in genomic
DNA determine only 15%–17% of nucleosome positioning
above what is expected by chance [3,4]. In vivo nucleosome
positions are influenced by the presence of numerous ATP-
dependent remodelers, and the transcriptional machinery
[7,8].

Recently, chromatin immunoprecipitation (ChIP)-sequenc-
ing technology was used to map the positions of nucleosomes
containing the variant H2A.Z histone across the yeast genome
[9]. H2A.Z nucleosomes are enriched at promoters; therefore,
this study mapped about 10,000 nucleosomes. Tiling arrays
have been recently used to catalog the positions of
nucleosomes at 4–5-bp resolution across the yeast genome
and their repositioning by chromatin remodelers [10,11].
However, dynamic changes in individual nucleosome posi-

tions in response to physiological perturbations that cause
global transcriptional reprogramming have not yet been
examined on a genomic scale in any organism.
To map the location of individual nucleosomes on a

genomic scale and at high resolution, we used ultra-high–
throughput sequencing methodology (Solexa/Illumina) to
sequence the ends of nucleosome-associated DNA. Our
approach enabled us to map individual nucleosomes nomi-
nally at single-nucleotide resolution. Nucleosome density and
stability at promoters and over coding regions were corre-
lated specifically with transcription rate rather than absolute
transcript levels. Two different modes of chromatin remod-
eling were associated with transcriptional regulation. Gene
activation was mainly accompanied by the eviction of one to
two nucleosomes from the promoter, and gene repression
was mainly accompanied by the appearance of nucleosomes
with varying stability over the promoter. Our work con-
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stitutes the first study of dynamic single-nucleosome remod-
eling in response to transcriptional perturbation across an
entire eukaryotic genome.

Results

Strategy for Identifying Nucleosome Positions Using Ultra-
High–Throughput Sequencing

We used micrococcal nuclease to isolate mononucleosome-
associated DNA from yeast cells before and after a physio-
logical perturbation (heat shock for 15 min) that causes
genome-wide transcriptional changes, and sequenced the
ends of the fragments. Only uniquely aligning reads were
used to define the ends of nucleosomal DNA. After aligning
sequence reads to the genome, we defined nucleosome peaks
by first using a Parzen window probability estimation of read
densities, then defining a peak of width 146 bp around the
centers of appropriately spaced maxima in the density
function (Materials and Methods). Our approach yielded
nucleosome positions at single-nucleotide resolution. We
calculated a score for the position and stability of each
nucleosome, which were normalized to account for differ-
ences in sequencing depth. Scores in the range of 0.2 to 0.25
and higher indicated nucleosomes whose positions often
matched in the two independent biological samples and,
hence, indicated bona fide nucleosomes; nucleosomes below
this threshold were defined by too few reads to be discernable
above background. At a score cutoff of 0.25, we defined the
locations of 49,043 nucleosomes in normally growing cells
and 52,817 nucleosomes in heat-shocked cells. Assuming that
two adjacent nucleosomes cannot be closer than 200 bp,
altogether about 73% of the yeast genome is covered by a
positioned nucleosome. Since only uniquely aligning reads
were used in our analysis, and the yeast genome contains an
appreciable fraction of repeated sequence elements, we
estimate that about 78% of the genome is covered by
positioned nucleosomes.

Recapitulation of Known Nucleosome Positions and
Expected Remodeling Events
We assessed the quality and accuracy of our nucleosome

sequencing data by examining the nucleosomes known to be
positioned at the PHO5 promoter. The yeast PHO5 promoter
is repressed during growth in rich media by specifically
positioned nucleosomes flanking a short, hypersensitive
region containing a binding site for the transcription factor
Pho4 [12]. These nucleosomes were evident in the alignment
of our raw sequence reads, and their precise positions
calculated by our analysis algorithm corresponded to the
known positions of these nucleosomes. The positions of these
three nucleosomes did not vary in the two independent
biological samples before and after heat shock, as this
perturbation does not affect the PHO5 promoter (Figure
1A). Quantitative real-time PCR (qPCR) for the three
nucleosome peaks and three troughs (linker regions) identi-
fied by sequencing provided independent experimental
verification of these nucleosome positions and the fact that
their positions did not change in the two samples (Figure 1B).
At individual promoters where transcription is activated by
heat shock, the raw data traces and our inferred nucleosome
peaks showed that nucleosomes were displaced at the
promoter after the perturbation (Figure 1C). Conversely, at
promoters that are repressed, positioned nucleosomes
appeared after the perturbation (Figure 1D). The genome-
wide nucleosome positions we identified experimentally
correspond well with individual nucleosomes mapped on
chromosome III as well as nucleosome-bound sequences
isolated in previous studies [2,4] (see Figure S1 and Table S1).
While this manuscript was in preparation, a catalog of
nucleosome positions in yeast was published [13]. Our
mapped nucleosome positions also agree well with this recent
study (Figure S1 and Table S1). Thus, our mononucleosome
preparations and the high-throughput sequencing assay
recapitulated bona fide in vivo nucleosome positions and
rearrangements.

Lower Nucleosome Occupancy at Promoters Compared to
Coding Regions
Low-resolution analysis using PCR microarrays has shown

that promoters are nucleosome-poor relative to coding
regions [14,15]. In accord with these findings, we found that
both the number and the stability of nucleosomes were
significantly lower at promoters than over coding regions (p
, 2.2 3 10!16). We plotted the average nucleosome profile
over all yeast genes to get an idea of how individual
nucleosomes were distributed in relation to promoters and
coding regions. Several features of chromatin organization
were evident from this plot (Figure 2A). First, as noted
before, promoters showed a lower probability of nucleo-
somes as compared to coding sequences. Second, the
apparent nucleosome-free region immediately upstream of
the transcription start site (TSS) is only approximately the
width of a single nucleosome. Third, there is a strongly
positioned nucleosome, likely an H2A.Z-containing nucleo-
some, that marks the start of the transcribed region
immediately downstream of the TSS [9]. Fourth, positioned
nucleosomes continue at periodic intervals downstream of
the TSS, with decreasing probabilities. These characteristics
of nucleosome positioning corroborate results based on
mapping nucleosomes across a single yeast chromosome [2].
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Author Summary

The eukaryotic genome is packed in a systematic hierarchy to
accommodate it within the confines of the cell’s nucleus. This
packing, however, presents an impediment to the transcription
machinery when it must access genomic DNA to regulate gene
expression. A fundamental aspect of genome packing is the
spooling of DNA around nucleosomes—structures formed from
histone proteins—which must be dislodged during transcription. In
this study, we identified all the nucleosome displacements
associated with a physiological perturbation causing genome-wide
transcriptional changes in the eukaryote Saccharomyces cerevisiae.
We isolated nucleosomal DNA before and after subjecting cells to
heat shock, then identified the ends of these DNA fragments and,
thereby, the location of nucleosomes along the genome, using ultra-
high–throughput sequencing. We identified localized patterns of
nucleosome displacement at gene promoters in response to heat
shock, and found that nucleosome eviction was generally associated
with activation and their appearance with gene repression.
Nucleosome remodeling generally improved the accessibility of
DNA to transcriptional regulators mediating the response to stresses
like heat shock. However, not all nucleosomal remodeling was
associated with transcriptional changes, indicating that the relation-
ship between nucleosome repositioning and transcriptional activity
is not merely a reflection of competing access to DNA.



We obtained nearly identical results in the independent heat-
shocked cells (Figure S2). Interestingly, we also observed a
strongly positioned nucleosome at the 39 end of the coding
region followed by a relatively nucleosome-free region, which
has not been noted before. This 39 nucleosomal mark does
not reflect the boundary of a downstream promoter, because
it was evident even at the 39 end of convergently transcribed
genes lacking another promoter immediately downstream of
their 39 end (Figures 2B and S2). This 39 end chromatin
feature was not biased towards convergently transcribed
genes, but we noted a modest association with genes that

were expressed at low levels and with long genes (unpub-
lished data). Our data also established that although the
internucleosomal linker length could vary widely, the linker
length is commonly about 30 bp in the yeast genome (Figure
S3).

Nucleosome Positioning Is Influenced by the Presence of
a TATA Box and Is Correlated with Transcription Rate
Although our whole-genome data revealed stereotypical

distribution patterns of nucleosomes around promoters, we
reasoned that the average profile might conceal several
distinct nucleosome occupancy profiles with distinct relation-

Figure 1. Ultra-High–Throughput Sequencing Recapitulates In Vivo Nucleosome Positions

(A) Detailed view of the PHO5 locus showing the raw sequence reads (brown and red profiles). The nucleosome positions calculated using our analysis
algorithm are shown as ovals, shaded according to their nucleosome score as indicated. The positions of the amplicons used for qPCR analysis are
marked as red (peaks) and green (troughs) lines below. The black arrows indicate the positions of genes in that region.
(B) qPCR verification of the three nucleosome peaks and three troughs identified by sequencing confirm that their positions remain the same before
and after heat shock.
(C) The heat-shock–induced SSA4 gene and flanking regions, showing that nucleosomes are displaced specifically at the SSA4 promoter and coding
region after heat shock (thick purple arrow).
(D) The heat-shock–repressed ribosomal protein gene RPL17B and flanking regions, showing that a single positioned nucleosome appears after heat
shock specifically at the RPL17B promoter (thin purple arrow). The nucleosome positions calculated using our analysis algorithm are indicated as in (A).
doi:10.1371/journal.pbio.0060065.g001
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ships to transcriptional activity or promoter sequence
characteristics. To reveal such distinctions, we performed k-
means clustering of the nucleosome peak profiles around all
yeast promoters. Indeed, several classes of nucleosome
profiles were now evident (Figure 2C). There was no
significant distinction between these different promoter
classes with respect to either their occupancy by the general
transcription factor TBP or their absolute transcript levels
(Figure S4). However, there were biases among the clusters

with respect to their representation of TATA box–containing
and TATA-less promoters, as well as their transcription rates.
In general, promoter classes containing a strongly positioned
nucleosome were enriched for TATA-less promoters and had
lower transcription rates, and conversely, the cluster con-
taining poorly positioned nucleosomes was enriched for
TATA-containing promoters and had higher transcription
rates [16] (Figure 2C). We ascertained that promoters that
appeared to be largely devoid of positioned nucleosomes

Figure 2. Patterns of Chromatin Organization in the Yeast Genome

(A) Average nucleosome profiles of all genes in the yeast genome from !600 bp to þ1,000 bp with respect to the transcription start site (TSS).
Nucleosome positions are shown as gray ovals below the profile. The intensity of the filled oval reflects the average probability score of the
nucleosomes (see Figure 1 for the color scale), and the dotted oval marks the spread of that nucleosome across all genes.
(B) The 39 end of genes is marked by a strongly positioned nucleosome, followed by a relatively nucleosome-free region. The inset shows the 39 end of
convergently transcribed genes in which the 39 end is not followed by another promoter.
(C) Distinct classes of nucleosome profiles revealed by k-means clustering of all promoters in the yeast genome. Each row in the clusters shows the
position of a nucleosome at an individual promoter. Nucleosomes are colored according to their probability using the shown color scale. Clusters 1–3
showed a significant enrichment for genes with lower transcription rates and for TATA-less genes (p # 10!10). Cluster 6 showed a significant enrichment
for genes with high transcription rates and for TATA-containing genes (p , 10!10).
(D) Average nucleosome profiles for TATA-containing (973) and TATA-less (4,382) promoters, aligned with respect to the TSS.
(E) The genes in the yeast genome were sorted in descending order according to their transcription rates [16], and the average promoter nucleosome
profiles for the top 500 genes (orange) and the bottom 500 genes (black) are plotted.
doi:10.1371/journal.pbio.0060065.g002
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were not artificially caused by our exclusion of ambiguous
sequence reads. The average nucleosome occupancy profiles
for TATA-less and TATA-containing promoters, considered
separately, showed that the absence of a consensus TATA
element in the promoter was indeed correlated with the
stereotypical genome-wide nucleosome profile (Figures 2D
and S2). This distinction was not due to the lower number of
TATA-containing promoters (unpublished data). Corre-
spondingly, genes with low transcription rates showed
stronger nucleosome positioning as compared to genes with
higher transcription rates (Figure 2E).

Visual inspection of nucleosome profiles before and after
heat shock indicated that the positions of the majority of
nucleosomes were closely maintained despite the genome-
wide transcriptional perturbation (Figure S1). In general,
individual nucleosome positions in each of the promoter
classes were largely unchanged in cells after heat shock
(Figure 2C). Approximately 65% of all positioned nucleo-
somes throughout the genome in normally growing cells were
within 30 bp of their positions in heat-shocked cells. At a
score cutoff of 0.25, less than 10% of the nucleosomes were
displaced more than 100 bp after heat shock (Table S1). In
addition to the promoter nucleosome classes, we also
observed strong, periodically positioned nucleosomes located
over the transcribed regions of most genes in the genome.
This periodicity was evident when we aligned all coding
regions to the first nucleosome downstream of the TSS and
ranked all these genes by a nucleosome positioning perio-
dicity (NPP) score applied to the coding region (Figure 3A;
Materials and Methods). There was no correlation between
NPP and steady-state transcript levels (unpublished data).
However, genes with a high NPP score, which had strongly
positioned nucleosomes over the coding region, were tran-
scribed at significantly lower rates than genes with a low NPP
score (Figure 3B). Correspondingly, genes that were tran-
scribed at low rates showed well-positioned periodic nucle-
osomes over the coding region relative to genes transcribed
at higher rates, which showed weaker nucleosome positioning
over the coding region (Figure 3C). Overall, the stereotypical
positioning of nucleosomes over coding regions and pro-
moters is consistent with the notion that nucleosome
positions in the yeast genome are not random, but rather,
are strongly encoded intrinsically through a combination of
DNA sequence composition and binding of other proteins.

Sequence-Dependent Positioning of Nucleosomes
Analysis of DNA sequences associated with nucleosomes

has indicated that nucleosome positions are intrinsically
encoded in DNA [4,6,13]. However, it is not clear to what
extent DNA sequence governs nucleosome positions com-
pared to other factors that might also contribute to
nucleosome positioning across the genome. One possibility
is that when a nucleosome is strongly positioned at one site by
virtue of DNA sequence, immediately adjacent nucleosomes
are ‘‘stacked’’ against it and therefore show little sequence
dependence. In particular, the regular array of nucleosomes
we observed over coding regions could reflect sequence-
dependent positioning of an H2A.Z nucleosome at the 59 end
of the array corresponding to the TSS, but with the
remainder being positioned relative to the first one in a
sequence-independent manner. To test this idea, we exam-
ined the sequence dependence of successive nucleosome

positions in the strongly positioned nucleosomal arrays over
the coding region. We first generated a profile of the AA/TT
dinucleotide frequency for the sequences associated with the
strongest positioned nucleosomes at the first position shown
in Figure 3A. Like the profile generated from computational
predictions of nucleosome positions [4,6], our profile shows a
repeating pattern with an approximate periodicity of ten
nucleotides, indicative of the rotational positioning of the
nucleosome over a preferred sequence (Figure 3D). Although
the information content of our measured dinucleotide profile
is modest, it is significantly different from the same
dinucleotide profile measured over randomly selected DNA
sequences from the genome (Figure 3D). We then measured
the average correlation between our nucleosome sequence
profile and the same dinucleotide profile for the set of
sequences associated with all nucleosomes in each of the
positions in the regular array of coding region nucleosomes.
As expected, the first position showed the strongest correla-
tion to the positioning sequence, but in general, successive
nucleosome positions in the arrays showed lower, but
significant, correlations to the positioning DNA profile
(Figure 3E). Thus, although the underlying DNA sequence
as measured by the dinucleotide profile makes only a modest
contribution to the positioning of nucleosomes, in general
this contribution is maintained to a large extent even when
nucleosomes are adjacent to another well-positioned nucle-
osome in the coding region.

Nucleosome Remodeling Is Mechanistically Linked to
Dynamic Changes in Transcription
In order to examine how dynamic remodeling of individual

nucleosomes was globally related to dynamic changes in
transcription after the physiological perturbation, we gen-
erated nucleosome remodeling profiles for all promoters
(Materials and Methods). A positive value in the remodeling
profile at a given promoter position indicated that there was
a nucleosome covering the position during normal growth,
but was depleted or evicted upon heat shock. A negative value
indicated the opposite, namely, the appearance of a more
strongly positioned nucleosome following heat shock. We
grouped the remodeling profiles by k-means clustering and
visualized specific patterns of nucleosomal changes at the
promoter.
We first analyzed remodeling profiles for promoters that

were activated at least 2-fold and promoters that were
repressed at least 2-fold by heat shock (Figure 4A and 4B).
Two well-defined groups (Group 2 and 4) of activated genes
contained promoters in which a single nucleosome that
covered the promoter during normal growth was evicted
upon heat shock, making the promoter more accessible for
binding by transcription factors or the general transcription
machinery (Figure 4A). Of these, Group 2 showed a significant
enrichment for targets of the activator Msn4 (p ¼ 0.02) [17]
Promoters in Group 1 had a nucleosome-free region between
the TSS and !200 bp both before and after heat shock. This
group showed a significant enrichment for targets of the
transcriptional activator Hsf1 (p , 0.02). Group 3 showed
enrichment for the remodeler Swi5 (p ¼ 0.002).
The difference in nucleosome profiles between Group 1

and Group 2 genes and the differential enrichment of the two
major stress transcription factor targets points to two distinct
modes of action by these activators. Hsf1 is constitutively
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bound to many heat shock gene promoters [18]. The
nucleosome profiles of Group 1 promoters, which showed
enrichment for Hsf1 targets, suggest that Hsf1 binding
induces eviction of the nucleosome covering the promoter
or precludes its occupancy over this region. On the other
hand, Msn4 target promoters (enriched in Group 2) had a
nucleosome covering the promoter during normal growth.
Our data suggest that translocation of Msn4 into the nucleus
upon heat shock [19] and its occupancy of the promoter
results in eviction of the nucleosome, and thus facilitates
activated transcription.

Genes repressed more than 2-fold after heat shock could

also be clustered into four major groups based on their
nucleosome remodeling profiles (Figure 4B). Group 2 re-
pressed genes had a nucleosome-free region between !200
and !100 bp upstream of the TSS during normal growth,
which was covered by the appearance of a single nucleosome
after heat shock. Group 3 repressed genes were characterized
by the appearance of a single nucleosome between!125 and
þ50 bp relative to the TSS after heat shock. Group 1 and
Group 4 repressed genes had subtle differences between
themselves and between normally growing and heat-shocked
cells. They both had a nucleosome-free region between!200

Figure 3. Nucleosome Positioning over Coding Regions Depends on Transcription Rate and Sequence Characteristics

(A) Genes were aligned to the first nucleosome downstream of the TSS and sorted by their nucleosome positioning periodicity (NPP) score (see
Materials and Methods). Genes were sorted by their NPP scores in normally growing cells, and the data from heat-shocked cells are shown in the same
order. The unaligned TSS is indicated by the approximate curve.
(B) The transcription rate of genes with high NPP scores (well-positioned nucleosomes) is significantly lower than that of genes with low NPP scores
(poorly positioned). In these box plots, the red line indicates the median, the upper and lower bounds of the box indicate the interquartile range, the
horizontal lines that are connected to the box by a dashed line indicate the upper and lower bounds of nonoutlier values, and the open circles indicate
outliers.
(C) Genes were sorted in descending order according to their transcription rates, and the average nucleosome profiles over the coding regions for top
500 genes (orange) and the bottom 500 genes (black) are plotted.
(D) Frequency of AA/TT dinucleotide at each position in the DNA sequence associated with the most strongly positioned first nucleosomes. The
frequency profiles for the dinucleotides AA and TT for the first nucleosome shown in (A) were summed and smoothed using a 3-bp moving average.
The same analysis was also performed for a comparable set of randomly chosen DNA sequences from the yeast genome.
(E) Correlation coefficients of the AA/TT profiles for the DNA sequences underlying each of the indicated coding nucleosome positions from (A), with
the positioning profile derived earlier. Each of the correlation values was significantly higher than background.
doi:10.1371/journal.pbio.0060065.g003
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and !100 bp regardless of the transcriptional status of the
genes.

The enrichment of transcription factor targets in these
four groups based on data from the yeast functional
regulatory network [20] and transcription factor ChIP-
microarray (ChIP-chip) [17,21] is tabulated in Table S2.
Group 3 was significantly enriched for the targets of Rap1,
Sfp1, Fhl1, Gcn5, and Esa1, all of which are factors mediating
the transcription of ribosomal protein genes during normal
growth [22–25]. Consistent with this, ribosomal protein genes
were significantly enriched in Group 3 (p ¼ 2.6 3 10!5). In
addition, Group 1 was significantly depleted for targets of all
the above-mentioned transcription factors, and was also
significantly depleted for ribosomal protein genes (p ¼ 6.53
10!4).

In order to quantitate whether distinct modes of nucleo-
some remodeling were generally used for gene activation and
repression, we calculated a nucleosome remodeling score for
both nucleosome eviction and nucleosome appearance
(Materials and Methods). Activated genes showed significantly
higher nucleosome eviction than nucleosome appearance,
whereas repressed genes showed significantly higher nucleo-
some appearance than eviction (Figure 4C). Although these
general trends are expected, we noted that if we clustered
remodeling profiles based on more distal promoter regions
(!400 to!200 bp upstream of the TSS), we did observe several
apparent nucleosome appearance events at activated pro-
moters (Figure S5). At some promoters, nucleosome eviction
proximal to the promoter could occur in conjunction with
nucleosome appearance more distally, as would be expected
for translational repositioning of nucleosomes.

Since ribosomal protein genes form one of the most
prominent classes of genes that are transcriptionally re-
pressed by heat shock, we analyzed nucleosome changes at
their promoters separately. Ribosomal protein genes were
clustered into three classes based on the presence or absence
of a well-positioned nucleosome between!50 andþ100 bp in
normally grown cells, and the nucleosome score. Upon heat
shock, we observed the appearance of medium- to high-
scoring nucleosomes between!200 andþ100 bp of almost all
of these ribosomal protein genes in the three groups (Figure
4D).

This analysis of nucleosomal changes at the promoters of
the most strongly regulated genes indicates that chromatin
remodeling events accompanying transcriptional regulation
are restricted to a small number of discrete patterns involving
one or two nucleosomes, rather than encompassing a larger
domain around the promoter. We also clustered the
nucleosome remodeling profiles for genes whose expression
did not change appreciably by the physiological perturbation

(less than 1.2-fold change). Surprisingly, we still observed
similar specific patterns of single-nucleosome remodeling
events at many of these promoters, indicating that specific
nucleosome events are not universally associated with tran-
scriptional changes (Figure 4E).

Dynamic Nucleosome Remodeling Causes Changes in the
Accessibility of Transcription Factor Binding Sites
Nucleosome positioning can influence the accessibility of

the core promoter as well as binding sites for sequence-
specific transcriptional regulators [10,26]. About 90% of the
sites occupied by transcription factors on chromosome III
under normal growth conditions were depleted of nucleo-
somes [2]. Examination of single-nucleosome remodeling at
promoters that were activated or repressed by heat shock in
our data revealed instances where the accessibility of the TSS
and of experimentally defined transcription factor binding
sites was indeed affected by remodeling. For example, at the
UBC4 promoter, which is activated by heat shock, three
moderately positioned nucleosomes covering two distinct
Hsf1 binding sites as well as the TSS were evicted, whereas a
single, well-positioned nucleosome appeared between the two
Hsf1 binding sites (Figure 5A). Conversely, at the RPL17B
promoter, which is repressed by heat shock, one well-
positioned nucleosome appeared after heat shock to cover
the TSS and a low-confidence proximal Rap1 binding site.
Interestingly, another moderate nucleosome upstream was
evicted, exposing a higher confidence distal Rap1 binding site
as well as an Fhl1 site (Figure 5B). Such eviction and
appearance of nucleosomes at adjacent sites could either
reflect translational repositioning or independent events; our
experiments cannot distinguish between these two possibil-
ities.
Based on these observations and other computational

predictions of whole-genome nucleosome positions [4], we
hypothesized that chromatin remodeling upon transcrip-
tional perturbation could result in changes in the accessibility
of the functional binding sites of stress-related transcription
factors. To test this hypothesis, we measured the change in
accessibility of transcription factor binding sites upon heat
shock, by comparing the overlap between functional binding
sites for transcription factors measured by ChIP-chip [17] and
nucleosome positions before and after heat shock (Figure 6).
Of the 101 factors tested, 46 had fewer than 20 functional
binding sites each in the genome, and we therefore excluded
them from this analysis. The remaining 55 transcription
factors could be stratified into three classes based on the
change in accessibility of the functional binding sites after
heat shock: factors whose binding sites showed an increase in
accessibility after heat shock (Figure 6A), factors whose

Figure 4. Classification of Promoter Nucleosome Remodeling Profiles

All profiles are aligned with respect to the TSS.
(A) Remodeling profiles of genes activated greater than 2-fold after heat shock and (B), genes repressed greater than 2-fold by heat shock. Nucleosomes
present during normal growth but evicted by heat shock are indicated in yellow, and nucleosomes that appeared after heat shock are shown in blue.
The average profiles of nucleosomes in each group before and after heat shock are shown on the right. The k-means clustering for (A) and (B) was done
based on data from!200 to TSS, but data are shown for!300 to þ100.
(C) A remodeling score for eviction and for appearance was separately calculated for activated genes and repressed genes (Materials and Methods), and
the data were plotted using box plots similar to Figure 3B. Activated genes showed significantly higher eviction scores than appearance scores, whereas
repressed genes showed significantly higher appearance scores than eviction scores.
(D) Nucleosome positions at the promoters of ribosomal protein genes during normal growth and after heat shock, clustered on data from!200 to
þ100 bp.
(E) Remodeling profiles of genes whose expression changed by less than 1.2-fold after heat shock, clustered based on data from!300 to þ100 bp.
doi:10.1371/journal.pbio.0060065.g004
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binding sites showed no significant change in accessibility
(Figure 6B), and those that showed decreased accessibility
after heat shock (Figure 6C). As hypothesized, most of the
transcription factors involved in mediating the stress re-
sponse belonged to the first group. The functional binding
sites for several key stress-related transcription factors such
as Hsf1, Msn2, Msn4, and Aft2 showed some of the strongest
increases in accessibility because of nucleosome reposition-
ing upon heat shock. In addition, binding sites for tran-
scription factors Abf2 and Cbf1, which are involved directly
or indirectly in chromatin remodeling [27,28], showed
increased accessibility. Surprisingly, we also observed in-
creased accessibility for transcription factors involved in
ribosomal protein gene transcription such as Rap1 and Fhl1
(see Figure 5B for an example). These two transcription
factors continue to occupy ribosomal gene promoters even
during transcriptional repression [29,30], raising the possi-
bility that their occupancy of the promoter under such
conditions, facilitated by the increased chromatin accessi-
bility that we observed, could be related to a repressive
function. Transcription factors whose binding sites did not
show a significant change in accessibility were mainly those
involved in the regulation of genes in metabolic pathways.

Discussion

We have mapped the dynamic remodeling of most
nucleosomes in the yeast genome during a transcriptional
perturbation using a combination of micrococcal nuclease
digestion, isolation of mononucleosome associated DNA and

Solexa sequencing. Using a Parzen window–based approach,
which is a generally applicable method to analyze all similar
datasets derived from ultra-high–throughput sequencing, we
defined the dynamic remodeling of approximately 50,000
nucleosomes at single-nucleotide resolution in normally
growing cells and in cells that were transcriptionally
perturbed by heat shock for 15 min. Our study independently
confirms expectations about nucleosomal positioning based
on previous smaller scale and lower resolution studies, but
also reveals novel features about chromatin structure and
transcriptional activity, especially given that previous studies
have not examined the dynamic repositioning of nucleo-
somes in response to genome-wide transcriptional reprog-
ramming.
Our results showed that in addition to a positioned

nucleosome at the TSS, genes in general tend to also contain
a well-positioned nucleosome at the 39 end of the coding
region. Yeast genes are thus demarcated by a well-positioned
nucleosome at each end of their transcribed regions, with a
nucleosome-free gap just beyond. This could potentially
reflect chromatin organization that facilitates RNA polymer-
ase initiation as well as termination. Most coding regions also
showed strongly and regularly positioned nucleosomes,
although the strength of the nucleosome positioning was
weaker in genes transcribed at high rates. Interestingly, the
first well-positioned boundary nucleosome downstream of
the TSS, which is likely to be an H2A.Z variant–containing
nucleosome based on previous studies [9], showed similar
stability in genes transcribed at high and low rates (Figure

Figure 5. Dynamic Nucleosome Remodeling Affects the Accessibility of Transcription Factor Binding Sites and the TSS

(A) Example of nucleosome eviction at the heat-shock–activated UBC4 promoter (blue line). Nucleosomes defined by our sequencing data are indicated
by ovals, colored according to their stability score. The positions of transcription factor binding sites are from [17] and are shaded according to their
confidence. Binding sites for other transcription factors are also affected by remodeling (unpublished data), but these are not known to be related to
heat shock.
(B) Example of nucleosome appearance at the heat-shock–repressed RPL17B promoter (red line).
doi:10.1371/journal.pbio.0060065.g005
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3B), suggesting that this chromatin landmark is important for
demarcating promoters.

Upon transcriptional perturbation, the majority of nucle-
osomes did not change positions, either at promoters or
within coding sequences (Figures 2 and 3). Gene-specific
remodeling was restricted to the discrete eviction, appear-
ance, or repositioning of one or two nucleosomes localized to
promoters. Remodeling events at genes that were activated or
repressed upon heat shock could be classified into distinct
patterns, indicating that there is no simple rule for
nucleosome remodeling at promoters to activate and repress
genes. Thus, although activation was generally and quantita-
tively associated with nucleosome eviction and transcrip-
tional repression with nucleosome appearance (Figure 4C),
there were cases in which strongly positioned nucleosomes
appeared at activated promoters (Figures 5 and S5). Trans-
lational repositioning of nucleosomes would seem like
eviction and appearance at different spots in the same
promoter. These observations suggest that nucleosome
remodeling at promoters is not a trivial consequence of
transcriptional activity appearing as overall openness of
chromatin at activated promoters and obstruction at re-
pressed promoters, but rather, that the precise placement of
individual nucleosomes at promoters mechanistically regu-
lates transcription by modulating access of trans-acting
factors to specific sites.

In addition to chromatin remodeling specifically at

regulated promoters, many promoters however showed
dynamic single-nucleosome remodeling during the physio-
logical perturbation even in the absence of any resulting
transcriptional change (Figure 4E), indicating that selective,
activity-specific remodeling was accompanied by a certain
number of background, nonspecific remodeling events. We
speculate that these background single-nucleosome remodel-
ing events poise promoters for rapid future transcriptional
activity, by either assembling partial preinitiation complexes
[31], or by exchanging core histones with one or more histone
variants [32]. A recent study showed that nucleosomes are
globally positioned by Isw2 acting at the boundary between
genes and intergenic regions, and that some of the Isw2-
dependent remodeling occurs independent of transcription
[11]. Therefore, the background remodeling seen in the
absence of transcriptional changes in our study could
potentially reflect nonspecific remodeling by ISW-like com-
plexes.
We classified transcription factors into three classes based

on change in accessibility of their binding sites upon
transcriptional perturbation. All the prominent stress-related
transcription factors belonged to the category showing a
strong increase in accessibility upon transcriptional pertur-
bation. In addition, we found that Rap1 and Fhl1 binding
sites showed an increase in accessibility even though the
majority of their target genes, namely the ribosomal protein
genes, showed a decrease in transcription upon heat-shock

Figure 6. Change in Accessibility of Functional Transcription Factor Binding Sites

Transcription factors were classified into three groups based on the change in accessibility of their functional binding sites because of nucleosome
repositioning after heat shock. Graphs of accessibility changes in arbitrary units (see Materials and Methods) are plotted for transcription factor binding
sites that (A) showed an increase in accessibility, (B) showed no significant change in accessibility, and (C) showed a decrease in accessibility upon heat
shock. The right of each graph shows a schematic of the relationship between nucleosomes and transcription factor binding sites.
doi:10.1371/journal.pbio.0060065.g006
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stress. When transcription of the ribosomal protein genes is
repressed by heat shock, osmotic shock, or inhibition of the
TOR pathway by rapamycin, it is known that Ifh1 leaves the
promoter, but Rap1 and Fhl1 remain bound [30]. It is possible
that Rap1 and Fhl1 play a role in recruiting chromatin
remodelers to bring about a repressive chromatin structure
at the ribosomal protein genes. Previous studies have
indicated that the primary discriminant between a functional
and a nonfunctional transcription factor binding site in vivo
is the presence of stably positioned nucleosomes covering the
latter [4,9]. Our results above indicate that superimposed on
this, there is a second mode of regulation at functional
binding sites of stress-related transcription factors brought
about by a stimulus-dependent remodeling of one or two
nucleosomes, making the site more accessible for stable
binding of transcription factors. Alternatively, binding of the
transcription factor(s) could result in the remodeling of
nucleosomes via the help of chromatin remodelers.

The work described here is the first study of genome-wide
dynamic nucleosome remodeling events at single-base reso-
lution. More such studies in yeast and higher eukaryotes will
shed light on the relationship between epigenetic changes at
high resolution and the global regulation of gene expression.

Materials and Methods

Preparation of mononucleosomes. Yeast S288C cultures were
grown in rich medium and subjected to 15-min heat shock as
described previously [18,33]. At the end of 15 min, control and heat-
shocked cells (200 ml each) were treated with formaldehyde to a final
concentration of 1% for 30 min. The reaction was stopped by adding
glycine to a final concentration of 125 mM, and cells were harvested
by centrifugation. Cells were washed 23 in PBS and resuspended in 20
ml of Zymolyase buffer (1 M sorbitol, 50 mM Tris [pH 7.4], and 10 mM
b-mercaptoethanol). Cells were spheroplasted by treating with 25 mg
of 20T Zymolyase, and incubated for 40 min at 30 8C with shaking at
200 rpm. The remainder of the steps were carried out using a
modified protocol described in [2]. Briefly, cells were spun down,
washed 13with 5 ml of Zymolyase buffer, and resuspended in 2 ml of
NP buffer (1 M sorbitol, 50 mM NaCl, 10 mM Tris [pH 7.4], 5 mM
MgCl2, 0.075% NP 40, 1 mM b-mercaptoethanol, and 500 lM
spermidine). CaCl2 was added to a final concentration of 3 mM,
and micrococcal nuclease digestions were carried out at concen-
trations ranging from 100 U/ml to 600 U/ml for 10 min at 37 8C. The
reactions were stopped by adding 100 ll of 5% SDS and 50 mM
EDTA. A total of 3 ll of 20 mg/ml proteinase K was added to each
tube, and incubated at 65 8C overnight. The DNA was purified by
phenol-chloroform-isoamyl alcohol (25:24:1) extraction, and precipi-
tated using ethanol. The DNA was treated with DNase-free RNase, re-
extracted with phenol-chloroform-isoamyl alcohol, precipitated with
ethanol, and resolved on a 1.25% agarose gel alongside a 100-bp
ladder. The mononucleosome size band (approximately 150–200 bp)
was excised and purified using the Invitrogen Pure-Link quick gel
extraction kit. The purified DNA was sequenced using Solexa
sequencing technology.

RNA isolation and expression profiling. S288C cells from 50-ml
cultures before and after heat shock at 39 8C for 15 min were
resuspended in 8 ml of AE buffer (50 mM sodium acetate [pH 5.2], 10
mM EDTA, 1.7% SDS). RNA extraction, cDNA labeling, and micro-
array manufacture and hybridizations were done as described
previously [18,20,33]. For absolute expression analysis, sheared
genomic DNA was labeled with Cy3, and cDNA was labeled with
Cy5. For relative expression-change analysis, cDNA from heat-
shocked cells was labeled with Cy5, and cDNA from normally grown
cells was labeled with Cy3. The labeled cDNAs were mixed and
hybridized onto DNA microarrays for 12–16 h. The arrays were
washed, dried, and scanned with a Axon 4000B scanner (Molecular
Devices). Cy5/Cy3 ratios were quantitated using GenePix Pro software
and analyzed using Acuity microarray informatics software after
filtering to exclude bad spots.

qPCR validation. Primer pairs used in Figure 1 were designed to
cover three peaks and three troughs in the promoter of PHO5 just

upstream of the known Pho4 binding and DNaseI hypersensitive site
[12]. Control primers used for normalization were designed in the
region between YCR023C and YCR024C. qPCR was performed using
SYBR green chemistry on an ABI 7900 instrument. Enrichment of
target loci in the ChIP sample relative to sonicated genomic DNA was
calculated for both unstressed cells and cells subjected to heat shock.

Nucleosome position detection. Solexa sequencing reads were
mapped back to the Oct 2003 yeast genome assembly obtained from
the Saccharomyces Genome Database (SGD) (http://www.yeastgenome.
org/) and only reads that mapped uniquely to the genome were
considered in the majority of our analysis. We generated 514,803 and
1,036,704 uniquely aligning reads for the normal and heat-shock
growth conditions, respectively. Reads mapping to the plus and
minus strands were processed separately. Reads were clustered using
a Parzen window–based approach. Essentially, a Gaussian kernel was
centered on each base pair in the genome, and a weighted score was
calculated at that position. The mean of the Gaussian was taken as the
position under consideration, with the standard deviation (smooth-
ing bandwidth) set at 20 bp. Each read contributed to the mean
position based on its kernelized distance from the mean. The
weighted score indicated the likelihood of finding an edge of the
nucleosome at the position. Thus, the entire genome was converted
into a likelihood landscape that was further processed to find local
maxima (Figure S6). These maxima were then treated as centers of a
cluster. Membership of a read in a cluster was based on its relative
contribution to the weighted score of the center. The number of
reads assigned to a cluster was defined as the unweighted score of that
cluster. We reasoned that a stable nucleosome would be expected to
result in a denser clustering of the reads than an unstable one. The
denser clustering of the reads results in better concordance of the
unweighted score to the weighted score. Hence, each cluster was
assigned a stability score that was calculated as the ratio of the
unweighted score to the weighted score. Nucleosomes were identified
as a plus cluster followed by a minus cluster within 100–200 bp. The
nucleosome score was calculated as a sum of the plus and minus
cluster unweighted scores. The nucleosome stability score was
calculated as a weighted average of the individual stability scores of
the participating clusters.

Overlap between unstressed and heat-shock–stressed cells. Whole-
genome maps for unstressed and stressed cells were filtered to
exclude nucleosomes that had a normalized score less than 0.2 (see
normalization procedure below). For each nucleosome in unstressed
cells, the distance to the nearest nucleosome after heat shock was
calculated. These data are reported in Table S1. Similar analysis was
used to determine the overlap between nucleosome positions
determined in this study and those from previous studies [2,4].

Random simulations to generate a normalization factor. Reads
equal in number to those we obtained from normal and heat-shocked
cells were selected at random from the yeast genome assembly Oct
2003, and peak finding was done as described. This process was
iterated 20 times. The average maximum score obtained in the
simulations was used as a scaling factor to normalize nucleosome
peak scores for cells grown at 30 8C. Normalization was done by
dividing nucleosome peak scores by the scaling factor. We then
calculated a scaling factor for the heat-shock data by multiplying the
scaling factor for the 30 8C data by the ratio of the median peak
scores for 39 8C to the peak scores for 30 8C. This was done to correct
for differences in sequencing depth for the two samples, thus
enabling quantitative comparison of nucleosome profiles across the
two conditions.

Average nucleosome profiles for TATA-containing and TATA-less
genes and separation by transcription rates. The upstream!600 bp to
downstream þ1,000 bp of each uncharacterized and verified ORF in
SGD was binned at 10 bp, and nucleosomes were mapped to each bin.
The zero point was the TSS. A nucleosome was said to map to a given
bin if it completely overlapped with the 10-bp bin. Each bin was
assigned the score of the overlapping nucleosome. In the cases where
our algorithm detected overlapping positions for a nucleosome, and
more than one nucleosome mapped to a single bin, the bin was
assigned the highest score. Genes were separated into TATA-
containing or TATA-less [34], and the average nucleosome profiles
were generated for each group by averaging the scores for the bin
across all the genes (973 and 4,382 promoters, respectively). Genes
were similarly separated into the top 500 or bottom 500 with respect
to transcription rates [16], and average profiles were plotted for these
classes.

Nucleosome positioning periodicity score and dinucleotide posi-
tioning profile. The NPP score was generated by calculating the
similarity of the experimentally derived nucleosome profile over the
coding region of every gene to an artificially generated profile where
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six nucleosomes of score 1.0 were regularly placed with 30-bp linker
lengths. In general, genes with well-positioned nucleosome had
profiles that were most similar to the synthetic profile and hence,
had a high NPP score. The first (þ1) nucleosome downstream of the
TSS is adjacent to a gap and is likely to be more strongly sequence
dependent for positioning than a nucleosome that is flanked by other
nucleosomes. We therefore derived AA/TT profiles from the
sequence underlying the first nucleosome. To derive high-confidence
sequence profiles, we aligned all genes to the first nucleosome as
shown in Figure 3A. We selected allþ1 nucleosomes with a score %0.9
for the input set. Since nucleosomes show a dyad symmetry in terms
of positioning over DNA, the reverse complement of each sequence
in the input set was also included before calculating the profile. We
calculated frequency profiles for the dinucleotides AA and TT, and
summed and smoothed them using a 3-bp moving average. This high-
confidence AA/TT profile was then correlated with the AA/TT
profiles derived from all nucleosomes at the þ1, þ2, þ3, and þ4
positions.

Generation of nucleosome remodeling profiles and remodeling
score. Genes that did not a have 200-bp–long promoter region were
excluded for this analysis. For all of the genes that passed this filter,
the difference between the nucleosome scores in normally grown
cells and cells after heat shock was calculated bin-wise from!400 bp
upstream to þ200 bp downstream of the start codon. For the plots
and clusters shown in Figure 4A and 4B, we then created subsets of
these data that included either genes that were activated by at least 2-
fold, or genes that were repressed at least 2-fold by heat shock. For
the cluster in Figure 4E, we selected remodeling profiles that showed
a difference in nucleosome score of at least 0.5 between the two
growth conditions at three or more positions in the promoter, and
also selected genes whose expression did not change by more than
1.2-fold. To calculate the remodeling score, a seven-bin window,
corresponding to a distance of 70 bp (approximately half of a
nucleosome), was scanned along each profile, and the individual bin
scores were averaged for each window. The maximum window score
in the positive direction across the entire profile was assigned as the
remodeling score for nucleosome eviction while a similar maximum
in the negative direction was assigned as the remodeling score for
nucleosome appearance.

Increase in accessibility of transcription factor binding sites after
stress. Transcription factor motifs were mapped across the entire
genome using position-weight matrices derived from [17] using
Patser [35] at a p-value cutoff of 0.01. These were considered the
putative binding sites while the functional (‘‘true’’) binding sites were
derived from published ChIP-chip data [17,18,36]. A functional motif
was considered to be occupied, and therefore not accessible, if it
overlapped with a nucleosome that had a score % 0.5. The occupancy
of the ChIP-chip binding sites was compared to that of the putative
motif binding sites, and a hypergeometric distribution was used to
calculate p-values. This analysis was done with data from both normal
and heat-shock conditions. To calculate the significance of the
change in binding site occupancy upon heat shock, the p-values for
the heat-shock nucleosome data were divided by the p-values derived
from the normal condition data.

Supporting Information

Figure S1. Comparison of Nucleosome Positions Before and After
Heat Shock, As Well As with Previously Reported Nucleosome
Positions
(A) and (B) show different regions of the genome. In each track, the
raw sequencing data is on top and consists of uniquely aligning reads
extended by the average fragment length selected for sequencing.
Below this are the nucleosome positions calculated by our analysis
algorithm, with their scores shown next to their positions (see Figure
S6). Previously reported nucleosome positions as reported by Yuan et
al [2] and Lee et al [13] are indicated.
Found at doi:10.1371/journal.pbio.0060065.sg001 (1.7 MB EPS).

Figure S2. Average Nucleosome Profiles after Heat Shock
(A) Nucleosome profile of all genes in the yeast genome from!600 bp
to þ1,000 bp with respect to the TSS. Nucleosome positions are
shown as gray ovals below the profile. The intensity of the filled oval
reflects the average probability score of the nucleosome, and the
dotted oval around the filled oval marks the spread of that
nucleosome across all genes.
(B) The 39 end of genes is marked by a strongly positioned
nucleosome, followed by a relatively nucleosome-free region. The

inset shows the 39 end of convergently transcribed genes in which the
39 end is not followed by another promoter.
(C) Average nucleosome profiles for TATA-containing (973) and
TATA-less (4,382) promoters, aligned with respect to the TSS.
Found at doi:10.1371/journal.pbio.0060065.sg002 (950 KB EPS).

Figure S3. Internucleosomal Linker Length Distribution in the Yeast
Genome
Linker lengths were binned into 10-bp (top) or 5-bp bins (bottom),
and their frequency distribution was plotted. The most frequent
inter-nucleosomal distance, or linker length, was 25–30 bp. The small
peak of linker length at 180 bp in the top graph likely reflects the
nucleosome-free region at promoters.
Found at doi:10.1371/journal.pbio.0060065.sg003 (1.5 MB EPS).

Figure S4. TBP Occupancy of Promoters and Absolute Expression
Levels of the Different Classes of Genes with Distinct Promoter
Nucleosome Profiles Shown in Figure 2C
(A) Box plots showing TBP occupancy using data derived from [33],
and (B) box plots showing absolute expression levels before and after
heat-shock stress. Absolute expression levels were measured as the
log2 ratio in a DNAþRNA hybridization on genomic microarrays.
Found at doi:10.1371/journal.pbio.0060065.sg004 (1.8 MB EPS).

Figure S5. k-Means Clustering of Nucleosome Remodeling Profiles
over Heat-Shock–Activated Promoters from !400 to !200 bp
Upstream of the TSS
Nucleosome eviction upon heat shock is indicated by yellow, and
nucleosome appearance after heat shock is indicated by blue. Clusters
1 and 2 together were significantly enriched for targets of Hsf1 (p ,
0.04). Although cluster 3 shows nucleosome appearance, this set could
include promoters where a nucleosome was evicted from a down-
stream region and repositioned upstream (e.g., UBC4 as shown in
Figure 5). It could also include promoters where a nucleosome is
appearing to cover a repressor site in the heat-shock–activated
promoter, or actually appearing at the promoter of another
divergently transcribed gene that is repressed by heat shock.
Found at doi:10.1371/journal.pbio.0060065.sg005 (744 KB EPS).

Figure S6. The 0.5-kb Window Showing Parzen Window–Based Peak
Detection
(A) Reads mapping to the plus strand (red) and minus strand (blue)
were processed separately.
(B) Each base position was assigned a score that was derived from the
sum of the relative contributions of all reads in its neighborhood as
defined by a Gaussian kernel positioned at that coordinate. A local
maximum on the plus strand (red) followed by a corresponding
maximumon theminus strand (blue) within a distance of 100 to 200 bp
defines a nucleosome. Peaks that were assigned higher Parzen scores
defined higher confidence nucleosomes as shown by the grey shading.
Found at doi:10.1371/journal.pbio.0060065.sg006 (1.4 MB EPS).

Table S1. Nucleosome Overlaps
(A) Overlap between nucleosomes mapped in this study with previous
studies. Percentages were calculated with reference to the lower of
the two numbers considered in the overlap. The threshold for
displacement was #50 bp.
(B) Overlap between nucleosome positions before and after tran-
scriptional perturbation in this study.
Found at doi:10.1371/journal.pbio.0060065.st001 (62 KB DOC).

Table S2. Enrichment and Depletion of Transcription Factor Targets
in Nucleosome Profile Clusters from Figure 4B
Found at doi:10.1371/journal.pbio.0060065.st002 (66 KB DOC).
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